Parameterizing the Effects of Tumor Shape in Magnetic Nanoparticle Thermotherapy Through a Computational Approach

2021 ◽  
Author(s):  
Amritpal Singh ◽  
Neeraj Kumar

Abstract In this work effects of tumor shape on magnetic nanoparticle hyperthermia (MNPH) are investigated and evaluated using four categories (spherical, oblate, prolate, and egg-shape) of tumor models having different morphologies. These tumors have equal volume; however, due to the differences in their shapes, they have different surface areas. The shape of tumors is quantified in terms of shape factor (ζ). Simulations for MNPH are done on the physical model constituting tumor tissue enclosed within the healthy tissue. Magnetic hyperthermia is applied (frequency 150 kHz, and magnetic field amplitude 20.5 kA/m) to all tumor models, for 1 hour, after injection of magnetic nanoparticles (MNPs) at the respective tumor centroids. The distribution of MNPs after injection is considered Gaussian. The governing model (Pennes' bioheat model) of heat transfer in biological media is solved with the finite volume-immersed boundary (FV-IB) method to simulate MNPH. Therapeutic effects are calculated using the Arrhenius tissue damage model, cumulative equivalent minutes at 43°C (CEM 43), and heterogeneity in temperature profiles of the tumors. Results show that the therapeutic effects due to MNPH depend significantly on the shape of a tumor. Tumors with higher shape factors receive less therapeutic effects in comparison to the tumors having lower shape factors. An empirical thermal damage model is also developed to assess the MNPH efficacy in real complex-shaped tumors.

2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Manpreet Singh ◽  
Qimei Gu ◽  
Ronghui Ma ◽  
Liang Zhu

Abstract Recent micro-CT scans have demonstrated a much larger magnetic nanoparticle distribution volume in tumors after localized heating than those without heating, suggesting possible heating-induced nanoparticle migration. In this study, a theoretical simulation was performed on tumors injected with magnetic nanoparticles to evaluate the extent to which the nanoparticle redistribution affects the temperature elevation and thermal dosage required to cause permanent thermal damage to PC3 tumors. 0.1 cc of a commercially available ferrofluid containing magnetic nanoparticles was injected directly to the center of PC3 tumors. The control group consisted of four PC3 tumors resected after the intratumoral injection, while the experimental group consisted of another four PC3 tumors injected with ferrofluid and resected after 25 min of local heating. The micro-CT scan generated tumor model was attached to a mouse body model. The blood perfusion rates in the mouse body and PC3 tumor were first extracted based on the experimental data of average mouse surface temperatures using an infrared camera. A previously determined relationship between nanoparticle concentration and nanoparticle-induced volumetric heat generation rate was implemented into the theoretical simulation. Simulation results showed that the average steady-state temperature elevation in the tumors of the control group is higher than that in the experimental group where the nanoparticles are more spreading from the tumor center to the tumor periphery (control group: 70.6±4.7 °C versus experimental group: 69.2±2.6 °C). Further, we assessed heating time needed to cause permanent thermal damage to the entire tumor, based on the nanoparticle distribution in each tumor. The more spreading of nanoparticles to tumor periphery in the experimental group resulted in a much longer heating time than that in the control group. The modified thermal damage model by Dr. John Pearce led to almost the same temperature elevation distribution; however, the required heating time was at least 24% shorter than that using the traditional Arrhenius integral, despite the initial time delay. The results from this study suggest that in future simulation, the heating time needed when considering dynamic nanoparticle migration during heating is probably between 19 and 29 min based on the Pearce model. In conclusion, the study demonstrates the importance of including dynamic nanoparticle spreading during heating and accurate thermal damage model into theoretical simulation of temperature elevations in tumors to determine thermal dosage needed in magnetic nanoparticle hyperthermia design.


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Zhenglun Alan Wei ◽  
Zhongquan Charlie Zheng ◽  
Xiaofan Yang

A parallel implementation of an immersed-boundary (IB) method is presented for low Reynolds number flow simulations in a representative elementary volume (REV) of porous media that are composed of a periodic array of regularly arranged structures. The material of the structure in the REV can be solid (impermeable) or microporous (permeable). Flows both outside and inside the microporous media are computed simultaneously by using an IB method to solve a combination of the Navier–Stokes equation (outside the microporous medium) and the Zwikker–Kosten equation (inside the microporous medium). The numerical simulation is firstly validated using flow through the REVs of impermeable structures, including square rods, circular rods, cubes, and spheres. The resultant pressure gradient over the REVs is compared with analytical solutions of the Ergun equation or Darcy–Forchheimer law. The good agreements demonstrate the validity of the numerical method to simulate the macroscopic flow behavior in porous media. In addition, with the assistance of a scientific parallel computational library, PETSc, good parallel performances are achieved. Finally, the IB method is extended to simulate species transport by coupling with the REV flow simulation. The species sorption behaviors in an REV with impermeable/solid and permeable/microporous materials are then studied.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5545 ◽  
Author(s):  
Izaz Raouf ◽  
Piotr Gas ◽  
Heung Soo Kim

Recently, in-vitro studies of magnetic nanoparticle (MNP) hyperthermia have attracted significant attention because of the severity of this cancer therapy for in-vivo culture. Accurate temperature evaluation is one of the key challenges of MNP hyperthermia. Hence, numerical studies play a crucial role in evaluating the thermal behavior of ferrofluids. As a result, the optimum therapeutic conditions can be achieved. The presented research work aims to develop a comprehensive numerical model that directly correlates the MNP hyperthermia parameters to the thermal response of the in-vitro model using optimization through linear response theory (LRT). For that purpose, the ferrofluid solution is evaluated based on various parameters, and the temperature distribution of the system is estimated in space and time. Consequently, the optimum conditions for the ferrofluid preparation are estimated based on experimental and mathematical findings. The reliability of the presented model is evaluated via the correlation analysis between magnetic and calorimetric methods for the specific loss power (SLP) and intrinsic loss power (ILP) calculations. Besides, the presented numerical model is verified with our experimental setup. In summary, the proposed model offers a novel approach to investigate the thermal diffusion of a non-adiabatic ferrofluid sample intended for MNP hyperthermia in cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document