Performance, Combustion and Emission Characteristics of a Common Rail Direct Injection Diesel Engine Fueled by Diesel/n-Amyl Alcohol Blends with Exhaust Gas Recirculation Technique

2021 ◽  
pp. 1-27
Author(s):  
Ramachander J ◽  
Santhosh Kumar Gugulothu

Abstract Biofuels are considered as one of the best viable and inexhaustible alternatives to conventional diesel fuel. Alcohols have become very important and popular in the present scenario due to their peculiar fuel properties and production nature. This study examines the effect of n-amyl alcohol and exhaust gas recirculation of 10% and 20% on various engine characteristics of Common Rail Direct Injection (CRDI) compression ignition engine. The proportion of n-amyl alcohol varies from 5% to 25% in 5% step (by volume). The obtained results show that diesel/n-amyl alcohol blends decrease the mean gas temperature and cylinder pressure, which is 1.88% and 4.25% less at 75% load for n-amyl alcohol (25%) with conventional diesel fuel. The duration of combustion has shown a hike of 4.66°CA for 25% n-amyl alcohol (at 75% load) compared to conventional diesel fuel. However, the cumulative heat release rate improved by 12.95% higher for 25% n-amyl alcohol at 75% load, the reason for the same is due to the extended delay in ignition. While n-amyl alcohol was used, the emission of nitrogen oxide emissions decreased considerably. However, the hydrocarbon (HC) (7-9%) and carbon monoxide (CO) (6-8%) emissions are increased due to inferior fuel properties like high latent heat evaporation of n-amyl alcohol. Compared with other blends, n-amyl alcohol (5%) produced results comparable to conventional diesel fuel, which is 3.6% higher in BSFC, 2.37 % higher BTE, and 33.33% higher CO emissions 18.18% more in HC emission, and 17.55% less NOx emission. Without further modification, we can use 25% n-amyl alcohol in the combustion ignition engines. From this evidence, we can summarize that n-amyl alcohol is a biofuel that is both renewable and sustainable, and also it considerably reduces harmful nitrogen oxide emissions. The performance, if needed, can be improved by changing the parameters of the engine.

2020 ◽  
Vol 21 (10) ◽  
pp. 1857-1877 ◽  
Author(s):  
Tim Franken ◽  
Fabian Mauss ◽  
Lars Seidel ◽  
Maike Sophie Gern ◽  
Malte Kauf ◽  
...  

This work presents the assessment of direct water injection in spark-ignition engines using single cylinder experiments and tabulated chemistry-based simulations. In addition, direct water injection is compared with cooled low-pressure exhaust gas recirculation at full load operation. The analysis of the two knock suppressing and exhaust gas cooling methods is performed using the quasi-dimensional stochastic reactor model with a novel dual fuel tabulated chemistry model. To evaluate the characteristics of the autoignition in the end gas, the detonation diagram developed by Bradley and co-workers is applied. The single cylinder experiments with direct water injection outline the decreasing carbon monoxide emissions with increasing water content, while the nitrogen oxide emissions indicate only a minor decrease. The simulation results show that the engine can be operated at λ = 1 at full load using water–fuel ratios of up to 60% or cooled low-pressure exhaust gas recirculation rates of up to 30%. Both technologies enable the reduction of the knock probability and the decrease in the catalyst inlet temperature to protect the aftertreatment system components. The strongest exhaust temperature reduction is found with cooled low-pressure exhaust gas recirculation. With stoichiometric air–fuel ratio and water injection, the indicated efficiency is improved to 40% and the carbon monoxide emissions are reduced. The nitrogen oxide concentrations are increased compared to the fuel-rich base operating conditions and the nitrogen oxide emissions decrease with higher water content. With stoichiometric air–fuel ratio and exhaust gas recirculation, the indicated efficiency is improved to 43% and the carbon monoxide emissions are decreased. Increasing the exhaust gas recirculation rate to 30% drops the nitrogen oxide emissions below the concentrations of the fuel-rich base operating conditions.


2020 ◽  
pp. 146808742091472
Author(s):  
José Galindo ◽  
Vicente Dolz ◽  
Javier Monsalve-Serrano ◽  
Miguel Angel Bernal Maldonado ◽  
Laurent Odillard

The low efficiency of the after-treatment systems during the cold start period of the internal combustion engines leads to excessive pollutant emissions levels. To reduce the nitrogen oxide emissions at these conditions, it could be necessary to use the high- and low-pressure exhaust gas recirculation strategies, even operating at low temperatures. This article evaluates the impact of using a low-pressure exhaust gas recirculation cooler bypass in a Euro 6 turbocharged diesel engine running under cold conditions (–7 °C). A new compact line fitted with a bypass system for the cooler is used with the aim of accelerating the engine warm-up process as compared to the original low-pressure exhaust gas recirculation line. The system is evaluated following two strategies, first performing exhaust gas recirculation without bypass and then performing exhaust gas recirculation bypassing the cooler. The results show that the activation the low-pressure exhaust gas recirculation from the engine cold start leads to a significant nitrogen oxide emissions reduction. Moreover, the bypass activation leads to increase the engine intake temperature, reducing the engine warm-up time and the CO emissions due to better combustion efficiency. However, the activation of the low-pressure exhaust gas recirculation at low temperatures could produce condensation and fouling deposits on the engine components affecting their life span. These phenomena are visualized using endoscope cameras in order to identify the condensation time and the final conditions of the elements. In addition, a chemical analysis of some condensates collected during the experiments and a comparison versus other species found in the literature is presented.


Author(s):  
Yong Qian ◽  
Yahui Zhang ◽  
Xiaole Wang ◽  
Xingcai Lu

An experimental study on biogas–diesel dual-fuel compression ignition was conducted in which biogas and diesel are used as the port-injected fuel and the directly injected fuel respectively. The effects of the total lower heating values QLHVs per cycle and the premixed ratio on the combustion characteristics and the emission characteristics are discussed in detail. The results show that, for constant QLHVs, the peak values of the heat release rate curves first decrease and then increase with increasing premixed ratio. Furthermore, the combustion phase is delayed. For a constant premixed ratio, with increasing QLHVs, the heat release rate curves change from a unimodal distribution to a bimodal distribution, and the ignition delay decreases constantly. With higher QLHVs, the nitrogen oxide emissions and the smoke emissions are relatively higher. In addition, the impacts of biogases with different components on the combustion and emissions were also researched. With increasing hydrogen, the combustion becomes increasingly concentrated, which leads to higher nitrogen oxide emissions. The proportion of carbon monoxide in the biogas has a great effect on the carbon monoxide emissions. Also, the influence of exhaust gas recirculation was also studied. With 60% exhaust gas recirculation, the nitrogen oxide emissions can be inhibited effectively.


Sign in / Sign up

Export Citation Format

Share Document