Effect of exhaust gas recirculation, fuel injection pressure and injection timing on the performance of common rail direct injection engine powered with honge biodiesel (BHO)

Energy ◽  
2017 ◽  
Vol 139 ◽  
pp. 828-841 ◽  
Author(s):  
S.V. Khandal ◽  
N.R. Banapurmath ◽  
V.N. Gaitonde
Author(s):  
Prashanth K. Karra ◽  
Matthias K. Veltman ◽  
Song-Charng Kong

This study performed experimental testing of a multi-cylinder diesel engine using different blends of biodiesel and diesel fuel. The engine used an electronically-controlled common-rail fuel injection system to achieve a high injection pressure. The operating parameters that were investigated included the injection pressure, injection timing, and exhaust gas recirculation rate. Results showed that biodiesel generally reduced soot emissions and increased NOx emissions. The increase in NOx emissions was not due to the injection timing shift when biodiesel was used because the present fuel injection system was able to give the same fuel injection timing. At high exhaust gas recirculation rates, emissions using regular diesel and 20% biodiesel blends are very similar while 100% biodiesel produces relatively different emission levels. Therefore, the increase in NOx emissions may not be a concern when 20% biodiesel blends are used with high exhaust gas recirculation rates in order to achieve low temperature combustion conditions.


2017 ◽  
Vol 19 (3) ◽  
pp. 347-359 ◽  
Author(s):  
Felix Leach ◽  
Richard Stone ◽  
Dave Richardson ◽  
Andrew Lewis ◽  
Sam Akehurst ◽  
...  

Downsized, highly boosted, gasoline direct injection engines are becoming the preferred gasoline engine technology to ensure that increasingly stringent fuel economy and emissions legislation are met. The Ultraboost project engine is a 2.0-L in-line four-cylinder prototype engine, designed to have the same performance as a 5.0-L V8 naturally aspirated engine but with reduced fuel consumption. It is important to examine particle number emissions from such extremely highly boosted engines to ensure that they are capable of meeting current and future emissions legislation. The effect of such high boosting on particle number emissions is reported in this article for a variety of operating points and engine operating parameters. The effect of engine load, air–fuel ratio, fuel injection pressure, fuel injection timing, ignition timing, inlet air temperature, exhaust gas recirculation level, and exhaust back pressure has been investigated. It is shown that particle number emissions increase with increase in cooled, external exhaust gas recirculation and engine load, and decrease with increase in fuel injection pressure and inlet air temperature. Particle number emissions are shown to fall with increased exhaust back pressure, a key parameter for highly boosted engines. The effects of these parameters on the particle size distributions from the engine have also been evaluated. Significant changes to the particle size spectrum emitted from the engine are seen depending on the engine operating point. Operating points with a bias towards very small particle sizes were noted.


2007 ◽  
Vol 8 (4) ◽  
pp. 365-378 ◽  
Author(s):  
H Ogawa ◽  
T Li ◽  
N Miyamoto

Ultra-low NOx and smokeless operation at higher loads up to half of the rated torque is attempted with large rates of cold exhaust gas recirculation (EGR). NOx decreases below 6 ppm (0.05 g/kW h) and soot significantly increases when first decreasing the oxygen concentration to 16 per cent with cold EGR. However, after peaking at 12–14 per cent oxygen, soot then decreases sharply to essentially zero at 9–10 per cent oxygen while maintaining ultra-low NOx, regardless of fuel injection quantity and injection pressure. However, at higher loads, with the oxygen concentration below 9–10 per cent, the air-fuel ratio has to be over-rich to exceed half of the rated torque, and thermal efficiency, CO, and THC deteriorate significantly. As the EGR rate increases, exhaust gas emissions and thermal efficiency vary with the intake oxygen content rather than with the excess air ratio. Longer ignition delays due to either advancing or retarding the injection timing reduced the smoke emissions, but advancing the injection timing has the advantages of maintaining the thermal efficiency and preventing misfiring. A reduction in the compression ratio is effective to reduce the in-cylinder temperature and increase the ignition delay as well as to expand the smokeless combustion range in terms of EGR and i.m.e.p. (indicated mean effective pressure).


2021 ◽  
Vol 3 (8) ◽  
Author(s):  
Prabhakara Rao Ganji ◽  
Rajesh Khana Raju Vysyaraju ◽  
Srinivasa Rao Surapaneni ◽  
B. Karuna Kumar

AbstractIn recent years, engine emissions have been one of the important problems which are of great concern. Hence, there is a growing need to develop engines with reduced emission. In the present study, Variable Compression Ratio diesel engine model has been validated by comparing the simulation results with the experimental. The study is aimed at analyzing the effect of compression ratio, exhaust gas recirculation, fuel injection pressure and start of injection on engine performance and emission characteristics. Using composite desirability technique, the engine parameters have been optimized to achieve lower NOx, soot and ISFC. The optimum combination has been observed at Compression ratio 17.52, Start of injection −30.1 °aTDC, Fuel injection pressure 736.06 bar and Exhaust gas recirculation 28.29%. ISFC, NOx and soot are reduced by 2.37%, 29.11% and 83.81% respectively. Higher Target Fuel Distribution Index indicates the improved mixture homogeneity for the optimized parameters.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7142
Author(s):  
T. M. Yunus Khan ◽  
Manzoore Elahi M. Soudagar ◽  
S. V. Khandal ◽  
Syed Javed ◽  
Imran Mokashi ◽  
...  

An existing diesel engine was fitted with a common rail direct injection (CRDi) facility to inject fuel at higher pressure in CRDi mode. In the current work, rotating blades were incorporated in the piston cavity to enhance turbulence. Pilot fuels used are diesel and biodiesel of Ceiba pentandra oil (BCPO) with hydrogen supply during the suction stroke. Performance evaluation and emission tests for CRDi mode were carried out under different loading conditions. In the first part of the work, maximum possible hydrogen substitution without knocking was reported at an injection timing of 15° before top dead center (bTDC). In the second part of the work, fuel injection pressure (IP) was varied with maximum hydrogen fuel substitution. Then, in the third part of the work, exhaust gas recirculation (EGR), was varied to study the nitrogen oxides (NOx) generated. At 900 bar, HC emissions in the CRDi engine were reduced by 18.5% and CO emissions were reduced by 17% relative to the CI mode. NOx emissions from the CRDi engine were decreased by 28% relative to the CI engine mode. At 20%, EGR lowered the BTE by 14.2% and reduced hydrocarbons, nitrogen oxide and carbon monoxide by 6.3%, 30.5% and 9%, respectively, compared to the CI mode of operation.


Sign in / Sign up

Export Citation Format

Share Document