scholarly journals Effects of Simulation Length and Flexible Foundation on Long-Term Response Extrapolation of a Bottom-Fixed Offshore Wind Turbine

Author(s):  
David Barreto ◽  
Madjid Karimirad ◽  
Arturo Ortega

Abstract This paper deals with statistical and modeling uncertainty on the estimation of long-term extrapolated extreme responses in a monopile offshore wind turbine. The statistical uncertainty is addressed by studying the effect of simulation length. Modeling uncertainty is explored by evaluating the effects of considering a rigid and flexible foundation. The soil's flexibility is taking into account by considering the improved apparent fixity method. To identify the most relevant environmental conditions, the modified environmental contour method is used. The analysis focuses on the fore-aft shear force (FASF) and the fore-aft bending moment (FABM) at the mudline. The results show that using a simulation length of 10-min, does not provide sufficient accuracy. It was found that for the FASF, simulation lengths of at least 30-min are required to achieve an accuracy of about +/-5%. For the FABM, it was found that both the extrapolations made with 20-min and 30-min simulations achieved similar levels of accuracy of about 20%. Meanwhile, the results obtained from 10-min simulations reached deviations of about 40%. Finally, from the comparison made between a rigid and flexible foundation, it was found that the extrapolated responses exhibit maximum deviations up to around 5% and 10% for the FASF and the FABM, respectively. Also, for the FABM, it was observed that the consideration of a flexible foundation causes the critical wind speed to shift from 16.5 m/s (rigid) to 18 m/s (flexible).

Author(s):  
Erica Bush ◽  
Puneet Agarwal ◽  
Lance Manuel

In evaluating ultimate limit states for design, time-domain aeroelastic response simulations are typically carried out to establish extreme loads on offshore wind turbines. Accurate load prediction depends on proper modeling of the wind turbulence and the wave stochastic processes as well as of the turbine, the support structure, and the foundation. One method for modeling the support structure is to rigidly connect it to the seabed; such a foundation model is appropriate only when the sea floor is firm (as is the case for rock). To obtain realistic turbine response dynamics for softer soils, it is important that a flexible foundation is modeled. While a single discrete spring for coupled lateral/rotational motion or several distributed springs along the length of the monopile may be employed, a tractable alternative is to employ a fictitious fixed-based pile modeled as an “equivalent” cantilever beam, where the length of this fictitious pile is determined using conventional pile lateral load analysis in combination with knowledge of the soil profile. The objective of this study is to investigate the influence of modeling flexible pile foundations on offshore wind turbine loads such as the fore-aft tower bending moment at the mudline. We employ a utility-scale 5MW offshore wind turbine model with a 90-meter hub height in simulations; the turbine is assumed to be sited in 20 meters of water. For a critical wind-wave combination known to control long-term design loads, we study time histories, power spectra, response statistics, and probability distributions of extreme loads for fixed-base and flexible foundation models with the intention of assessing the importance of foundation model selection. Load distributions are found to be sensitive to foundation modeling assumptions. Extrapolation to rare return periods may be expected to lead to differences in derived nominal loads needed in ultimate limit state design; this justifies the use of flexible foundation models in simulation studies.


Author(s):  
D. Karmakar ◽  
C. Guedes Soares

In the present study, the environmental contour method is applied for predicting out-of-plane bending moment loads at the blade root and tower base moment loads for 5MW offshore floating wind turbine of spar-type, DeepCWind and WindFloat semi-submersible floater configuration. FAST code is used to simulate the wind conditions for various return periods and a brief comparison on the design loads of the floating wind turbine for I-D, 2-D and 3-D environmental contour method is analyzed. In addition, a brief comparison of design loads with the spar-type, DeepCWind and WindFloat semi-submersible floater is discussed. The study is helpful to improve the turbine design load estimates and is useful in predicting accurate long-term design loads for wind turbines without requiring excessive computational effort.


Author(s):  
Christof Devriendt ◽  
Filipe Magalhães ◽  
Mahmoud El Kafafy ◽  
Gert De Sitter ◽  
Álvaro Cunha ◽  
...  

2021 ◽  
Author(s):  
Luca Pustina ◽  
Claudio Pasquali ◽  
Jacopo Serafini ◽  
Claudio Lugni ◽  
Massimo Gennaretti

Abstract Among the renewable energy technologies, offshore wind energy is expected to provide a significant contribution for the achievement of the European Renewable Energy (RE) targets for the next future. In this framework, the increase of generated power combined with the alleviation of vibratory loads achieved by application of suitable advanced control systems can lead to a beneficial LCOE (Levelized Cost Of Energy) reduction. This paper defines a control strategy for increasing floating offshore wind turbine lifetime through the reduction of vibratory blade and hub loads. To this purpose a Proportional-Integral (PI) controller based on measured blade-root bending moment feedback provides the blade cyclic pitch to be actuated. The proportional and integral gain matrices are determined by an optimization procedure whose objective is the alleviation of the vibratory loads due to a wind distributed linearly on the rotor disc. This control synthesis process relies on a linear, state-space, reduced-order model of the floating offshore wind turbine derived from aero-hydroelastic simulations provided by the open-source tool OpenFAST. In addition to the validation of the proposed controller, the numerical investigation based on OpenFAST predictions examines also the corresponding control effort, influence on platform dynamics and expected blade lifetime extension. The outcomes show that, as a by-product of the alleviation of the vibratory out-of-plane bending moment at the blade root, significant reductions of both cumulative blade lifetime damage and sway and roll platform motion are achieved, as well. The maximum required control power is less than 1% of the generated power.


Author(s):  
P. Agarwal ◽  
L. Manuel

In the design of wind turbines—onshore or offshore—the prediction of extreme loads associated with a target return period requires statistical extrapolation from available loads data. The data required for such extrapolation are obtained by stochastic time-domain simulation of the inflow turbulence, the incident waves, and the turbine response. Prediction of accurate loads depends on assumptions made in the simulation models employed. While for the wind, inflow turbulence models are relatively well established, for wave input, the current practice is to model irregular (random) waves using a linear wave theory. Such a wave model does not adequately represent waves in shallow waters where most offshore wind turbines are being sited. As an alternative to this less realistic wave model, the present study investigates the use of irregular nonlinear (second-order) waves for estimating loads on an offshore wind turbine, with a focus on the fore-aft tower bending moment at the mudline. We use a 5MW utility-scale wind turbine model for the simulations. Using, first, simpler linear irregular wave modeling assumptions, we establish long-term loads and identify governing environmental conditions (i.e., the wind speed and wave height) that are associated with the 20-year return period load derived using the inverse first-order reliability method. We present the nonlinear irregular wave model next and incorporate it into an integrated wind-wave-response simulation analysis program for offshore wind turbines. We compute turbine loads for the governing environmental conditions identified with the linear model and also for an extreme environmental state. We show that computed loads are generally larger with the nonlinear wave modeling assumptions; this establishes the importance of using such refined nonlinear wave models in stochastic simulation of the response of offshore wind turbines.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3737 ◽  
Author(s):  
Thanh Dam Pham ◽  
Hyunkyoung Shin

Floating offshore wind turbines promise to provide an abundant source of energy. Currently, much attention is being paid to the efficient performance and the economics of floating wind systems. This paper aims to develop a spar-type platform to support a 5-MW reference wind turbine at a water depth of 150 m. The spar-type platform includes a moonpool at the center. The design optimization process is composed of three steps; the first step uses a spreadsheet to calculate the platform dimensions; the second step is a frequency domain analysis of the responses in wave conditions; and the final step is a fully coupled simulation time domain analysis to obtain the dynamic responses in combined wind, wave, and current conditions. By having a water column inside the open moonpool, the system’s dynamic responses to horizontal and rotating motions are significantly reduced. Reduction of these motions leads to a reduction in the nacelle acceleration and tower base bending moment. On the basic of optimization processes, a spar-type platform combined with a moonpool is suggested, which has good performance in both operational conditions and extreme conditions.


Sign in / Sign up

Export Citation Format

Share Document