A Numerical Study of Heat Transfer from an Array of Jets Impinging on a Flat Moving Surface

2022 ◽  
Author(s):  
Sanil Shah

Abstract Numerical study of heat transfer between circular jet arrays and the flat moving surface is carried out. Two jet patterns: inline and staggered, are chosen. Total nine circular jets are used in both jet patterns. The analysis is carried out for steady-state and transient conditions with the turbulent flow of jet fluid. In steady-state analysis, the influence of surface motion on the flow field and heat transfer by the array of jets is analyzed. The surface-to-jet velocity ratio (r) varies from 0 to 2. In transient analysis, the effect of jet pattern on the cooling of hot moving plate is analyzed. The two-equation shear stress transport (SST) k-? turbulence model is used for solving Reynolds averaged Navier-Stokes (RANS) equations of conservation of mass, momentum, and energy for incompressible turbulent flow. The steady-state analysis shows that surface motion has a significant effect on the flow field and heat transfer. The transient analysis results show that a staggered jet pattern cools the plate more uniformly than an inline jet pattern.

2021 ◽  
Vol 13 (1) ◽  
pp. 168781402199092
Author(s):  
Miaomiao Li ◽  
Yu Wang ◽  
Weifang Chen ◽  
Rupeng Zhu

At present, the thermal analysis of oil-air-lubricated angular-contact ball bearings uses empirical heat transfer coefficients to calculate heat transfer. This approach presents problems such as simulating the actual lubrication flow field and ignoring the internal heat conduction in the bearing ring. This paper proposes a CFD steady-state analysis model of oil-air-lubricated angular-contact ball bearings based on fluid-solid conjugate heat transfer to analyze the flow field and temperature field. A temperature rise test of oil-air-lubricated angular-contact ball bearings was carried out to verify the positive determination of the simulation analysis results. Based on a fluid-solid conjugate heat transfer steady-state analysis model, the effects of lubrication parameters, operating conditions, and rolling element materials on the temperature rise characteristics of oil-air-lubricated angular-contact ball bearings were studied. The research results provide a method for analyzing the temperature rise characteristics of oil-lubricated bearings and provide a basis for the analysis of oil-lubricated bearing life.


1985 ◽  
Vol 50 ◽  
Author(s):  
J-E. Andersson ◽  
O. Persson

AbstractThe results from a large number of single-hole packer tests in crystalline rock from three test sites in Sweden have been analysed statistically. Average hydraulic conductivity values for 25 m long test intervals along boreholes with a maximal length of about 700 m are used in this study. A comparison between steady state and transient analysis of the same test data has been performed.The mean vaule of the hydraulic conductivity determined from steady state analysis was found to be about two to three times higher compared to transient analysis. However, in some cases the steady state analysis resulted in 10 to 20 times higher values compared to the transient analysis. Such divergence between the two analysis methods may be caused by deviations from the assumed flow pattern, borehole skin effects and influence of hydraulic boundaries.


2017 ◽  
Vol 139 (11) ◽  
Author(s):  
A. Putz ◽  
S. Staudacher ◽  
C. Koch ◽  
T. Brandes

Current engine condition monitoring (ECM) systems for jet engines include the analysis of on-wing gas path data using steady-state performance models. Such data, which are also referred to as performance snapshots, usually are taken during cruise flight and during takeoff. Using steady-state analysis, it is assumed that these snapshots have been taken under stabilized operating conditions. However, this assumption is reasonable only for cruise snapshots. During takeoff, jet engines operate in highly transient conditions with significant heat transfer occurring between the fluid and the engine structure. Hence, steady-state analysis of takeoff snapshots is subject to high uncertainty. Because of this, takeoff snapshots are not used for performance analysis in current ECM systems. We quantify the analysis uncertainty by transient simulation of a generic takeoff maneuver using a performance model of a medium size two-shaft turbofan engine with high bypass ratio. Taking into account the influence of the preceding operating regimes on the transient heat transfer effects, this takeoff maneuver is extended backward in time to cover the aircraft turnaround as well as the end of the last flight mission. We present a hybrid approach for thermal calculation of both the fired engine and the shutdown engine. The simulation results show that takeoff derate, ambient temperature, taxi-out (XO) duration and the duration of the preceding aircraft turnaround have a major influence on the transient effects occurring during takeoff. The analysis uncertainty caused by the transient effects is significant. Based on the simulation results, we propose a method for correction of takeoff snapshots to steady-state operating conditions. Furthermore, we show that the simultaneous analysis of cruise and corrected takeoff snapshots leads to significant improvements in observability.


Author(s):  
Wesley C. Williams ◽  
Pavel Hejzlar ◽  
Pradip Saha

A computer code (LOCA-COLA) has been developed at MIT for steady state analysis of convective heat transfer loops. In this work, it is used to investigate an external convection loop for decay heat removal of a post-LOCA GFR. The major finding is that natural circulation cooling of the GFR is feasible under certain circumstances. Both helium and CO2 cooled system components are found to operate in the mixed convection regime, the effects of which are noticeable as heat transfer enhancement or degradation. It is found that CO2 outperforms helium under identical natural circulation conditions. Decay heat removal is found to have a quadratic dependence on pressure in the laminar flow regime and linear dependence in the turbulent flow regime. Other parametric studies have been performed as well. In conclusion, convection cooling loops are a credible means for GFR decay heat removal and LOCA-COLA is an effective tool for steady state analysis of cooling loops.


2019 ◽  
Vol 5 (11) ◽  
pp. 2318-2332
Author(s):  
Ehab Ghazi Al-Hasany ◽  
Ashraf Hameed Alsalmani ◽  
Salah S. Al-Zaidee

In a steel structure, choosing the connections type are one of the most important parameters in design consideration. How a connection type affects the vibration of steel beams has been investigated in this paper. The most effective connection type in reducing beam vibration has been highlighted. The study was conducted using different finite element models to simulate each connection type. Firstly, the model was validated by comparing its results with the results obtained by the analytical approach. In the numerical model, a linear frequency analysis was performed to determine beam natural frequency, then it has been compared with the corresponding value obtained by the Euler-Bernoulli approximations for simply supported beams. After that, two analysis procedures have been executed, steady-state analysis and transient analysis. In the steady-state analysis, a harmonic load with different frequencies was applied to the beam mid-span, while an impulsive load has been applied in the transient analysis. The results indicate that the deflection could be reduced by 72%, furthermore steady vibration of the beam can be reduced by 81% with using one of the moment connections instead of the traditional shear connection.


Sign in / Sign up

Export Citation Format

Share Document