Jet Engine Gas Path Analysis Based on Takeoff Performance Snapshots

2017 ◽  
Vol 139 (11) ◽  
Author(s):  
A. Putz ◽  
S. Staudacher ◽  
C. Koch ◽  
T. Brandes

Current engine condition monitoring (ECM) systems for jet engines include the analysis of on-wing gas path data using steady-state performance models. Such data, which are also referred to as performance snapshots, usually are taken during cruise flight and during takeoff. Using steady-state analysis, it is assumed that these snapshots have been taken under stabilized operating conditions. However, this assumption is reasonable only for cruise snapshots. During takeoff, jet engines operate in highly transient conditions with significant heat transfer occurring between the fluid and the engine structure. Hence, steady-state analysis of takeoff snapshots is subject to high uncertainty. Because of this, takeoff snapshots are not used for performance analysis in current ECM systems. We quantify the analysis uncertainty by transient simulation of a generic takeoff maneuver using a performance model of a medium size two-shaft turbofan engine with high bypass ratio. Taking into account the influence of the preceding operating regimes on the transient heat transfer effects, this takeoff maneuver is extended backward in time to cover the aircraft turnaround as well as the end of the last flight mission. We present a hybrid approach for thermal calculation of both the fired engine and the shutdown engine. The simulation results show that takeoff derate, ambient temperature, taxi-out (XO) duration and the duration of the preceding aircraft turnaround have a major influence on the transient effects occurring during takeoff. The analysis uncertainty caused by the transient effects is significant. Based on the simulation results, we propose a method for correction of takeoff snapshots to steady-state operating conditions. Furthermore, we show that the simultaneous analysis of cruise and corrected takeoff snapshots leads to significant improvements in observability.

2021 ◽  
Vol 13 (1) ◽  
pp. 168781402199092
Author(s):  
Miaomiao Li ◽  
Yu Wang ◽  
Weifang Chen ◽  
Rupeng Zhu

At present, the thermal analysis of oil-air-lubricated angular-contact ball bearings uses empirical heat transfer coefficients to calculate heat transfer. This approach presents problems such as simulating the actual lubrication flow field and ignoring the internal heat conduction in the bearing ring. This paper proposes a CFD steady-state analysis model of oil-air-lubricated angular-contact ball bearings based on fluid-solid conjugate heat transfer to analyze the flow field and temperature field. A temperature rise test of oil-air-lubricated angular-contact ball bearings was carried out to verify the positive determination of the simulation analysis results. Based on a fluid-solid conjugate heat transfer steady-state analysis model, the effects of lubrication parameters, operating conditions, and rolling element materials on the temperature rise characteristics of oil-air-lubricated angular-contact ball bearings were studied. The research results provide a method for analyzing the temperature rise characteristics of oil-lubricated bearings and provide a basis for the analysis of oil-lubricated bearing life.


Author(s):  
Wesley C. Williams ◽  
Pavel Hejzlar ◽  
Pradip Saha

A computer code (LOCA-COLA) has been developed at MIT for steady state analysis of convective heat transfer loops. In this work, it is used to investigate an external convection loop for decay heat removal of a post-LOCA GFR. The major finding is that natural circulation cooling of the GFR is feasible under certain circumstances. Both helium and CO2 cooled system components are found to operate in the mixed convection regime, the effects of which are noticeable as heat transfer enhancement or degradation. It is found that CO2 outperforms helium under identical natural circulation conditions. Decay heat removal is found to have a quadratic dependence on pressure in the laminar flow regime and linear dependence in the turbulent flow regime. Other parametric studies have been performed as well. In conclusion, convection cooling loops are a credible means for GFR decay heat removal and LOCA-COLA is an effective tool for steady state analysis of cooling loops.


Energies ◽  
2018 ◽  
Vol 11 (3) ◽  
pp. 539 ◽  
Author(s):  
C. Anuradha ◽  
C. Sakthivel ◽  
T. Venkatesan ◽  
N. Chellammal

A non-isolated Multiport Single Ended Primary Inductor Converter (SEPIC) for coordinating photovoltaic sources is developed in this paper. The proposed multiport converter topologies comprise a Single Input Multi yield (SIMO) and Multi Input Multi Output (MIMO). It is having the merits of decreased number of parts and high power density. Steady state analysis verifies the improved situation of both the proposed topologies, which is further checked through simulation results.


2020 ◽  
Vol 142 (3) ◽  
Author(s):  
Jyoti Bhati ◽  
Swapan Paruya ◽  
Subhramaniam Pushpavanam

Abstract In this work, we compute the dynamics of a spherical vapor-bubble in an infinite pool of subcooled water during bubble collapse using our semi-analytical method. The main contribution of this work is to bring out the dynamics of nonmonotonic bubble collapse describing heat transfer characteristics and nonlinear dynamics. The dynamics shows the variation of radius with time for collapsing vapor bubble at different subcooling ΔTsub of 1.40 K to 35 K. The present approach accurately determines the bubble radius decreasing with time and has been compared with our experimental results, the experiment from literature, the other theories, and correlations. As it is noted that the literature lacks steady-state analysis of oscillating bubble collapse, we also report the steady-state analysis and the bifurcation analysis of bubble collapse at a pressure of 1.0 atm to check the stability of bubble collapse. The effect of ΔTsub and initial bubble radius R0 on dynamics of bubble collapse has been analyzed. The collapse of big bubbles involves with the bubble oscillations because of a large contribution of liquid inertia and the collapse of very small bubbles essentially occurs in heat transfer regime.


2022 ◽  
Author(s):  
Sanil Shah

Abstract Numerical study of heat transfer between circular jet arrays and the flat moving surface is carried out. Two jet patterns: inline and staggered, are chosen. Total nine circular jets are used in both jet patterns. The analysis is carried out for steady-state and transient conditions with the turbulent flow of jet fluid. In steady-state analysis, the influence of surface motion on the flow field and heat transfer by the array of jets is analyzed. The surface-to-jet velocity ratio (r) varies from 0 to 2. In transient analysis, the effect of jet pattern on the cooling of hot moving plate is analyzed. The two-equation shear stress transport (SST) k-? turbulence model is used for solving Reynolds averaged Navier-Stokes (RANS) equations of conservation of mass, momentum, and energy for incompressible turbulent flow. The steady-state analysis shows that surface motion has a significant effect on the flow field and heat transfer. The transient analysis results show that a staggered jet pattern cools the plate more uniformly than an inline jet pattern.


Sign in / Sign up

Export Citation Format

Share Document