Influence of Inflow Disturbances on Stagnation-Region Heat Transfer

1999 ◽  
Vol 122 (2) ◽  
pp. 258-265 ◽  
Author(s):  
S. Bae ◽  
S. K. Lele ◽  
H. J. Sung

Numerical simulations of laminar stagnation-region heat transfer in the presence of freestream disturbances are performed. The sensitivity of heat transfer in stagnation-region to freestream vorticity is scrutinized by varying the length scale, amplitude, and Reynolds number. As an organized inflow disturbance, a spanwise sinusoidal variation is superimposed on the velocity component normal to the wall. An accurate numerical scheme is employed to integrate the compressible Navier-Stokes equations and energy equation. The main emphasis is placed on the length scale of laminar inflow disturbances, which maximizes the heat transfer enhancement. Computational results are presented to disclose the detailed behavior of streamwise vortices. Three regimes of the behavior are found depending on the length scale: these are the “damping,” “attached amplifying,” and “detached amplifying” regimes, respectively. The simulation data are analyzed with an experimental correlation. It is found that the present laminar results follow a general trend of the correlation. [S0022-1481(00)01102-6]

Author(s):  
Albert Y. Tong

The problem of convective heat transfer of a circular liquid jet impinging onto a substrate is studied numerically. The objective of the study is to understand the hydrodynamics and heat transfer of the impingement process. The Navier-Stokes equations are solved using a finite-volume formulation. The free surface of the jet is tracked by the volume-of-fluid method. The energy equation is modeled by using an enthalpy-based formulation. Detailed flow fields as well as free surface contours and pressure distributions on the substrate have been obtained. Local Nusselt number variations along the solid surface have also been calculated. The effects of several key parameters on the hydrodynamics and heat transfer of an impinging liquid jet have been examined. It has been found that the jet-inlet velocity profile and jet elevation have a significant effect on the hydrodynamics and heat transfer, particularly in the stagnation region, of an impinging jet. The numerical results have been compared with experimental data obtained from the literature. The close agreement supports the validity of the numerical study.


2003 ◽  
Vol 125 (4) ◽  
pp. 788-791 ◽  
Author(s):  
Rongguang Jia, ◽  
Arash Saidi, and ◽  
Bengt Sunden

This paper concerns a numerical investigation of the heat and fluid flow in V-shaped ribbed ducts. The Navier-Stokes equations and the energy equation are solved in conjunction with a low Reynolds number k–ε turbulence model. The Reynolds turbulent stresses are computed with an explicit algebraic stress model (EASM) while the turbulent heat fluxes are calculated with a simple eddy diffusivity model (SED). Detailed velocity and thermal field results have been used to explain the effects of the V-shaped ribs and the mechanisms of the heat transfer enhancement.


2005 ◽  
Author(s):  
Ningli Liu ◽  
Rene Chevray ◽  
Gerald A. Domoto ◽  
Elias Panides

A finite difference numerical approach for solving slightly compressible, time-dependent, viscous laminar flow is presented in this study. Simplified system of Navier-Stokes equations and energy equation are employed in the study in order to perform more efficient numerical calculations. Fluid flow and heat transfer phenomena in two dimensional microchannels are illustrated numerically in this paper. This numerical approach provides a complete numerical simulation of the development of the fluid flow and the temperature profiles through multi-dimensional microchannels.


Author(s):  
G. Nasif ◽  
R. M. Barron ◽  
R. Balachandar ◽  
O. Iqbal

A numerical investigation to determine flow and thermal characteristics of an unsubmerged axisymmetric oil jet impinging on a confined flat surface with uniform heat flux has been undertaken. Large impingement length to nozzle diameter ratios were chosen in the simulations. The volume of fluid (VOF) method utilizing a High Resolution Interface Capturing scheme (HRIC) was used to perform the two-phase (air-oil) simulations. The governing 3D Navier-Stokes equations and energy equation were numerically solved using a finite volume discretization on an unstructured mesh. A new methodology was developed to define the radial extent of the stagnation region and understand the variation of the heat transfer coefficient in this region. The normalized local Nusselt number profile was found to be slightly dependent on Reynolds number for a given nozzle size. Correlations to predict the dimensionless velocity gradient and the Nusselt number in the stagnation region were established.


2017 ◽  
Vol 21 (suppl. 1) ◽  
pp. 33-38
Author(s):  
Lin Cai ◽  
Zhuo Liu ◽  
Jianshu Gao ◽  
Xiao Liu

This paper describes a numerical analysis of a heat transfer enhancement technique that introduces fractal-shaped design for impingement cooling. Based on the gas turbine combustion chamber cooling, a fractal-shaped nozzle is designed for the constant flow area in a single impingement cooling model. The incompressible Reynolds-averaged Navier-Stokes equations are applied to the system using CFD software. The numerical results are compared with the experiment results for array impingement cooling.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 756
Author(s):  
Federico Lluesma-Rodríguez ◽  
Francisco Álcantara-Ávila ◽  
María Jezabel Pérez-Quiles ◽  
Sergio Hoyas

One numerical method was designed to solve the time-dependent, three-dimensional, incompressible Navier–Stokes equations in turbulent thermal channel flows. Its originality lies in the use of several well-known methods to discretize the problem and its parallel nature. Vorticy-Laplacian of velocity formulation has been used, so pressure has been removed from the system. Heat is modeled as a passive scalar. Any other quantity modeled as passive scalar can be very easily studied, including several of them at the same time. These methods have been successfully used for extensive direct numerical simulations of passive thermal flow for several boundary conditions.


2010 ◽  
Vol 656 ◽  
pp. 189-204 ◽  
Author(s):  
ILIA V. ROISMAN

This theoretical study is devoted to description of fluid flow and heat transfer in a spreading viscous drop with phase transition. A similarity solution for the combined full Navier–Stokes equations and energy equation for the expanding lamella generated by drop impact is obtained for a general case of oblique drop impact with high Weber and Reynolds numbers. The theory is applicable to the analysis of the phenomena of drop solidification, target melting and film boiling. The theoretical predictions for the contact temperature at the substrate surface agree well with the existing experimental data.


Author(s):  
Younes Menni ◽  
Ahmed Azzi ◽  
A. Chamkha

Purpose This paper aims to report the results of numerical analysis of turbulent fluid flow and forced-convection heat transfer in solar air channels with baffle-type attachments of various shapes. The effect of reconfiguring baffle geometry on the local and average heat transfer coefficients and pressure drop measurements in the whole domain investigated at constant surface temperature condition along the top and bottom channels’ walls is studied by comparing 15 forms of the baffle, which are simple (flat rectangular), triangular, trapezoidal, cascaded rectangular-triangular, diamond, arc, corrugated, +, S, V, double V (or W), Z, T, G and epsilon (or e)-shaped, with the Reynolds number changing from 12,000 to 32,000. Design/methodology/approach The baffled channel flow model is controlled by the Reynolds-averaged Navier–Stokes equations, besides the k-epsilon (or k-e) turbulence model and the energy equation. The finite volume method, by means of commercial computational fluid dynamics software FLUENT is used in this research work. Findings Over the range investigated, the Z-shaped baffle gives a higher thermal enhancement factor than with simple, triangular, trapezoidal, cascaded rectangular-triangular, diamond, arc, corrugated, +, S, V, W, T, G and e-shaped baffles by about 3.569-20.809; 3.696-20.127; 3.916-20.498; 1.834-12.154; 1.758-12.107; 7.272-23.333; 6.509-22.965; 8.917-26.463; 8.257-23.759; 5.513-18.960; 8.331-27.016; 7.520-26.592; 6.452-24.324; and 0.637-17.139 per cent, respectively. Thus, the baffle of Z-geometry is considered as the best modern model of obstacles to significantly improve the dynamic and thermal performance of the turbulent airflow within the solar channel. Originality/value This analysis reports an interesting strategy to enhance thermal transfer in solar air channels by use of attachments with various shapes


Sign in / Sign up

Export Citation Format

Share Document