Simulation of Jet Impingement Heat Transfer

Author(s):  
G. Nasif ◽  
R. M. Barron ◽  
R. Balachandar ◽  
O. Iqbal

A numerical investigation to determine flow and thermal characteristics of an unsubmerged axisymmetric oil jet impinging on a confined flat surface with uniform heat flux has been undertaken. Large impingement length to nozzle diameter ratios were chosen in the simulations. The volume of fluid (VOF) method utilizing a High Resolution Interface Capturing scheme (HRIC) was used to perform the two-phase (air-oil) simulations. The governing 3D Navier-Stokes equations and energy equation were numerically solved using a finite volume discretization on an unstructured mesh. A new methodology was developed to define the radial extent of the stagnation region and understand the variation of the heat transfer coefficient in this region. The normalized local Nusselt number profile was found to be slightly dependent on Reynolds number for a given nozzle size. Correlations to predict the dimensionless velocity gradient and the Nusselt number in the stagnation region were established.

Author(s):  
Albert Y. Tong

The objective of the present study is to understand the hydrodynamics and heat transfer of the impingement process, particularly the complexities attributable to the asymmetric geometry of an oblique free liquid jet. The Navier-Stokes equations are solved using a finite-volume formulation with a two-step projection method on a fixed non-uniform rectangular grid. The free surface of the jet is tracked by the volume-of-fluid (VOF) method with a second order accurate piecewise-linear scheme. The energy equation is modeled by using an enthalpy-based formulation. The method provides a state-of-the-art comprehensive model of the dynamic and thermal aspects of the impinging process. Nusselt number plots and pressure distributions on the substrate are obtained. The locations of the maximum Nusselt number as well as maximum pressure on the surface are identified and compared with the geometric jet impingement point. Results for normal impingement are also obtained and are used as reference. The effects of several parameters are examined. These include jet Reynolds number, jet impingement angle and jet inlet velocity profile. Experimental and analytical data from the literature are also included for comparison.


2015 ◽  
Author(s):  
Afzal Husain ◽  
Nasser A. Al-Azri ◽  
Abdus Samad ◽  
Sun-Min Kim ◽  
Kwang-Yong Kim

The current study investigated comparative performance of wall-confined and unconfined multiple micro-jet impingement heat sink models for electronic cooling applications. The pressure-drop and thermal characteristics were determined for steady incompressible and laminar flow by solving three-dimensional Navier–Stokes equations. Several parallel and staggered micro-jet configurations consisting of a maximum of 16 jet impingements were tested. The effectiveness of various micro-jet configurations, i.e., inline 2×2, 3×3 and 4×4 jets, and staggered 5-jet and 13-jet arrays with nozzle diameters 50, 76, and 100 μm, were analyzed at various flow rates for the maximum temperature-rise, pressure-drop and heat transfer coefficient characteristics. Two design parameters, the ratio of jet diameter to height of the channel and jet distribution, were chosen for comparative performance analysis.


2010 ◽  
Vol 65 (11) ◽  
pp. 961-968 ◽  
Author(s):  
Tasawar Hayat ◽  
Muhammad Nawaz

This investigation describes the effects of heat transfer on magnetohydrodynamic (MHD) axisymmetric flow of a viscous fluid between two radially stretching sheets. Navier-Stokes equations are transformed into the ordinary differential equations by utilizing similarity variables. Solution computations are presented by using the homotopy analysis method. The convergence of obtained solutions is checked. Skin friction coefficient and Nusselt number are given in tabular form. The dimensionless velocities and temperature are also analyzed for the pertinent parameters entering into the problem.


Author(s):  
Albert Y. Tong

The problem of convective heat transfer of a circular liquid jet impinging onto a substrate is studied numerically. The objective of the study is to understand the hydrodynamics and heat transfer of the impingement process. The Navier-Stokes equations are solved using a finite-volume formulation. The free surface of the jet is tracked by the volume-of-fluid method. The energy equation is modeled by using an enthalpy-based formulation. Detailed flow fields as well as free surface contours and pressure distributions on the substrate have been obtained. Local Nusselt number variations along the solid surface have also been calculated. The effects of several key parameters on the hydrodynamics and heat transfer of an impinging liquid jet have been examined. It has been found that the jet-inlet velocity profile and jet elevation have a significant effect on the hydrodynamics and heat transfer, particularly in the stagnation region, of an impinging jet. The numerical results have been compared with experimental data obtained from the literature. The close agreement supports the validity of the numerical study.


2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Giulio Croce ◽  
Olga Rovenskaya ◽  
Paola D'Agaro

A fully conjugate heat transfer analysis of gaseous flow in short microchannels is presented. Navier–Stokes equations, coupled with Maxwell and Smoluchowski slip and temperature jump boundary conditions, are used for numerical analysis. Results are presented in terms of Nusselt number, heat sink thermal resistance, and resulting wall temperature as well as Mach number profiles for different flow conditions. The comparative importance of wall conduction, rarefaction, and compressibility are discussed. It was found that compressibility plays a major role. Although a significant penalization in the Nusselt number, due to conjugate heat transfer effect, is observed even for a small value of solid conductivity, the performances in terms of heat sink efficiency are essentially a function only of the Mach number.


1999 ◽  
Vol 122 (2) ◽  
pp. 258-265 ◽  
Author(s):  
S. Bae ◽  
S. K. Lele ◽  
H. J. Sung

Numerical simulations of laminar stagnation-region heat transfer in the presence of freestream disturbances are performed. The sensitivity of heat transfer in stagnation-region to freestream vorticity is scrutinized by varying the length scale, amplitude, and Reynolds number. As an organized inflow disturbance, a spanwise sinusoidal variation is superimposed on the velocity component normal to the wall. An accurate numerical scheme is employed to integrate the compressible Navier-Stokes equations and energy equation. The main emphasis is placed on the length scale of laminar inflow disturbances, which maximizes the heat transfer enhancement. Computational results are presented to disclose the detailed behavior of streamwise vortices. Three regimes of the behavior are found depending on the length scale: these are the “damping,” “attached amplifying,” and “detached amplifying” regimes, respectively. The simulation data are analyzed with an experimental correlation. It is found that the present laminar results follow a general trend of the correlation. [S0022-1481(00)01102-6]


2006 ◽  
Vol 4 ◽  
pp. 224-236
Author(s):  
A.S. Topolnikov

The paper is devoted to numerical modeling of Navier–Stokes equations for incompressible media in the case, when there exist gas and liquid inside the rectangular calculation region, which are separated by interphase boundary. The set of equations for incompressible liquid accounting for viscous, gravitational and surface (capillary) forces is solved by finite-difference scheme on the spaced grid, for description of interphase boundary the ideology of Level Set Method is used. By developed numerical code the set of hydrodynamic problems is solved, which describe the motion of two-phase incompressible media with interphase boundary. As a result of numerical simulation the solutions are obtained, which are in good agreement with existing analytical and experimental solutions.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 756
Author(s):  
Federico Lluesma-Rodríguez ◽  
Francisco Álcantara-Ávila ◽  
María Jezabel Pérez-Quiles ◽  
Sergio Hoyas

One numerical method was designed to solve the time-dependent, three-dimensional, incompressible Navier–Stokes equations in turbulent thermal channel flows. Its originality lies in the use of several well-known methods to discretize the problem and its parallel nature. Vorticy-Laplacian of velocity formulation has been used, so pressure has been removed from the system. Heat is modeled as a passive scalar. Any other quantity modeled as passive scalar can be very easily studied, including several of them at the same time. These methods have been successfully used for extensive direct numerical simulations of passive thermal flow for several boundary conditions.


2010 ◽  
Vol 656 ◽  
pp. 189-204 ◽  
Author(s):  
ILIA V. ROISMAN

This theoretical study is devoted to description of fluid flow and heat transfer in a spreading viscous drop with phase transition. A similarity solution for the combined full Navier–Stokes equations and energy equation for the expanding lamella generated by drop impact is obtained for a general case of oblique drop impact with high Weber and Reynolds numbers. The theory is applicable to the analysis of the phenomena of drop solidification, target melting and film boiling. The theoretical predictions for the contact temperature at the substrate surface agree well with the existing experimental data.


Author(s):  
Younes Menni ◽  
Ahmed Azzi ◽  
A. Chamkha

Purpose This paper aims to report the results of numerical analysis of turbulent fluid flow and forced-convection heat transfer in solar air channels with baffle-type attachments of various shapes. The effect of reconfiguring baffle geometry on the local and average heat transfer coefficients and pressure drop measurements in the whole domain investigated at constant surface temperature condition along the top and bottom channels’ walls is studied by comparing 15 forms of the baffle, which are simple (flat rectangular), triangular, trapezoidal, cascaded rectangular-triangular, diamond, arc, corrugated, +, S, V, double V (or W), Z, T, G and epsilon (or e)-shaped, with the Reynolds number changing from 12,000 to 32,000. Design/methodology/approach The baffled channel flow model is controlled by the Reynolds-averaged Navier–Stokes equations, besides the k-epsilon (or k-e) turbulence model and the energy equation. The finite volume method, by means of commercial computational fluid dynamics software FLUENT is used in this research work. Findings Over the range investigated, the Z-shaped baffle gives a higher thermal enhancement factor than with simple, triangular, trapezoidal, cascaded rectangular-triangular, diamond, arc, corrugated, +, S, V, W, T, G and e-shaped baffles by about 3.569-20.809; 3.696-20.127; 3.916-20.498; 1.834-12.154; 1.758-12.107; 7.272-23.333; 6.509-22.965; 8.917-26.463; 8.257-23.759; 5.513-18.960; 8.331-27.016; 7.520-26.592; 6.452-24.324; and 0.637-17.139 per cent, respectively. Thus, the baffle of Z-geometry is considered as the best modern model of obstacles to significantly improve the dynamic and thermal performance of the turbulent airflow within the solar channel. Originality/value This analysis reports an interesting strategy to enhance thermal transfer in solar air channels by use of attachments with various shapes


Sign in / Sign up

Export Citation Format

Share Document