Comparing Performance of Back Propagation Networks and Support Vector Machines in Detecting Disease Outbreaks

Author(s):  
El Mahmoud ◽  
David Calvert
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Qiang Liu ◽  
Songyong Liu ◽  
Qianjin Dai ◽  
Xiao Yu ◽  
Daoxiang Teng ◽  
...  

Incipient fault detection and identification (IFDI) of cutting arms is a crucial guarantee for the smooth operation of a roadheader. However, the shortage of fault samples restricts the application of the fault diagnosis technique, and the data analysis tools should be optimized efficiently. In this study, four machine learning tools (the back-propagation neural network based on genetic algorithm optimization, the naive Bayes based on genetic algorithm optimization, the support vector machines based on particle swarm optimization, and the support vector machines based on dynamic cuckoo) are applied to address the challenge in the IFDI of cutting arms. The commonly measured current and vibration data cutting arms are used in the IFDI. The experimental results show that the support vector machines based on dynamic cuckoo outperform the other methods. Besides, the performance of the four methods under different operating conditions is compared. The fault cause of cutting arms of the roadheader is analyzed and the design improvement scheme for cutting arms is provided. This study provides a reference for improving the fault diagnosis of the roadheader.


2010 ◽  
Vol 13 (4) ◽  
pp. 609-620 ◽  
Author(s):  
Samaneh Ghazanfari-Hashemi ◽  
Amir Etemad-Shahidi ◽  
Mohammad H. Kazeminezhad ◽  
Amir Reza Mansoori

Scour around pile groups is rather complicated and not yet fully understood due to the fact that it arises from the triple interaction of fluid–structure–seabed. In this study, two data mining approaches, i.e. Support Vector Machines (SVM) and Artificial Neural Networks (ANN), were applied to estimate the wave-induced scour depth around pile groups. To consider various arrangements of pile groups in the development of the models, datasets collected in the field and laboratory studies were used and arrangement parameters were considered in the models. Several non-dimensional controlling parameters, including the Keulegan–Carpenter number, pile Reynolds number, Shield's parameter, sediment number, gap to diameter ratio and number of piles were used as the inputs. Performances of the developed SVM and ANN models were compared with those of existing empirical methods. Results indicate that the data mining approaches used outperform empirical methods in terms of accuracy. They also indicate that SVM will provide a better estimation of scour depth than ANN (back-propagation/multi-layer perceptron). Sensitivity analysis was also carried out to investigate the relative importance of non-dimensional parameters. It was found that the Keulegan–Carpenter number and gap to diameter ratio have the greatest effect on the equilibrium scour depth around pile groups.


2019 ◽  
Vol 2019 (1) ◽  
pp. 33-40 ◽  
Author(s):  
Jennifer S. Raj ◽  
Vijitha Ananthi J

The nonlinear regression estimation issues are solved by successful application of a novel neural network technique termed as support vector machines (SVMs). Evaluation of recurrent neural networks (RNNs) can assist in pattern recognition of several real-time applications and reduce the pattern mismatch. This paper provides a robust prediction model for multiple applications. Traditionally, back-propagation algorithms were used for training RNN. This paper predict system reliability by applying SVM learning algorithm to RNN. Comparison of the proposed model is done with the existing systems for analysis of prediction performance. These results indicate that the performance of proposed system exceeds that of the existing ones.


Sign in / Sign up

Export Citation Format

Share Document