Computational Simulation Study on the Viscous Drag of the Automotive Wet Clutch for Prediction and Control

Author(s):  
In-Ha Sung ◽  
Jin Seok Ryu

The reduction of drag torque is an important issue in terms of improving transmission efficiency. Drag torque in a wet clutch occurs because viscous automatic transmission fluid flow narrow gap between friction plate and separate plate. The main purpose of this study is to observe the effects of the various parameters on the drag torque using finite element simulation. In this study, the simulation analysis reveals that as the rotational speed increases, the drag torque generally increases to a critical point and then decreases sharply at a high speed regime. Depth of groove on the friction plate plays an important role in controlling drag torque peak. An increase in the depth of groove causes a decrease in shear stress; thus, the drag torque also decreases according to Newton’s law of viscosity. Also, an observation of the effect of the angle of groove pattern shape shows that the drag torque changes with groove pattern shape. Therefore, the optimum angle of the groove pattern should be determined carefully, considering both the clutch performance and drag reduction. It is expected that the results from this study can be very useful as a database for clutch design and to predict the drag torque for the initial design with respect to various clutch parameters.


Author(s):  
Tamara Green

Much of the literature, policies, programs, and investment has been made on mental health, case management, and suicide prevention of veterans. The Australian “veteran community is facing a suicide epidemic for the reasons that are extremely complex and beyond the scope of those currently dealing with them.” (Menz, D: 2019). Only limited work has considered the digital transformation of loosely and manual-based historical records and no enablement of Artificial Intelligence (A.I) and machine learning to suicide risk prediction and control for serving military members and veterans to date. This paper presents issues and challenges in suicide prevention and management of veterans, from the standing of policymakers to stakeholders, campaigners of veteran suicide prevention, science and big data, and an opportunity for the digital transformation of case management.


2009 ◽  
Vol 325 (1-2) ◽  
pp. 85-105 ◽  
Author(s):  
P.A. Meehan ◽  
P.A. Bellette ◽  
R.D. Batten ◽  
W.J.T. Daniel ◽  
R.J. Horwood

Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2590
Author(s):  
Che-Yu Lin ◽  
Ke-Vin Chang

Most biomaterials and tissues are viscoelastic; thus, evaluating viscoelastic properties is important for numerous biomedical applications. Compressional viscoelastography is an ultrasound imaging technique used for measuring the viscoelastic properties of biomaterials and tissues. It analyzes the creep behavior of a material under an external mechanical compression. The aim of this study is to use finite element analysis to investigate how loading conditions (the distribution of the applied compressional pressure on the surface of the sample) and boundary conditions (the fixation method used to stabilize the sample) can affect the measurement accuracy of compressional viscoelastography. The results show that loading and boundary conditions in computational simulations of compressional viscoelastography can severely affect the measurement accuracy of the viscoelastic properties of materials. The measurement can only be accurate if the compressional pressure is exerted on the entire top surface of the sample, as well as if the bottom of the sample is fixed only along the vertical direction. These findings imply that, in an experimental validation study, the phantom design should take into account that the surface area of the pressure plate must be equal to or larger than that of the top surface of the sample, and the sample should be placed directly on the testing platform without any fixation (such as a sample container). The findings indicate that when applying compressional viscoelastography to real tissues in vivo, consideration should be given to the representative loading and boundary conditions. The findings of the present simulation study will provide a reference for experimental phantom designs regarding loading and boundary conditions, as well as guidance towards validating the experimental results of compressional viscoelastography.


1973 ◽  
Vol 4 (3) ◽  
pp. 195-208
Author(s):  
Keith Hoeller

Is death the “enemy” to be avoided at all costs or is it to be faced, engendering liberation and rebirth? Contemporary suicidology concerns itself with the “causes” of suicide, placing great emphasis on prediction and control However, when the “meaning” of suicide is studied, understanding it as a human phenomenon becomes of major concern. Part of this understanding requires one to view “dread” as implying the possibility of making one's existence one's own, rather than something that must be prevented. In the study of suicide, revolutionary insights can emerge if less emphasis is placed on death as the “enemy” and more attention is placed on “dread” as a potential liberator.


Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 492
Author(s):  
Valentina Y. Guleva ◽  
Polina O. Andreeva ◽  
Danila A. Vaganov

Finding the building blocks of real-world networks contributes to the understanding of their formation process and related dynamical processes, which is related to prediction and control tasks. We explore different types of social networks, demonstrating high structural variability, and aim to extract and see their minimal building blocks, which are able to reproduce supergraph structural and dynamical properties, so as to be appropriate for diffusion prediction for the whole graph on the base of its small subgraph. For this purpose, we determine topological and functional formal criteria and explore sampling techniques. Using the method that provides the best correspondence to both criteria, we explore the building blocks of interest networks. The best sampling method allows one to extract subgraphs of optimal 30 nodes, which reproduce path lengths, clustering, and degree particularities of an initial graph. The extracted subgraphs are different for the considered interest networks, and provide interesting material for the global dynamics exploration on the mesoscale base.


Sign in / Sign up

Export Citation Format

Share Document