The Application of Ceramics to the Small Gas Turbine

Author(s):  
A. F. McLean

This paper reviews the limitations today’s superalloys exercise on the realization of the potential of the gas turbine engine. Ceramic materials are suggested as a means of achieving lower cost and higher turbine inlet temperature in small gas turbine engines. The paper serves to introduce ceramic materials and processing techniques and identifies silicon nitride, silicon carbide and lithium-alumina-silicate as promising materials for high temperature turbine engine components.

Author(s):  
Joshua A. Clough ◽  
Mark J. Lewis

The development of new reusable space launch vehicle concepts has lead to the need for more advanced engine cycles. Many two-stage vehicle concepts rely on advanced gas turbine engines that can propel the first stage of the launch vehicle from a runway up to Mach 5 or faster. One prospective engine for these vehicles is the Air Turborocket (ATR). The ATR is an innovative aircraft engine flowpath that is intended to extend the operating range of a conventional gas turbine engine. This is done by moving the turbine out of the core engine flow, alleviating the traditional limit on the turbine inlet temperature. This paper presents the analysis of an ATR engine for a reusable space launch vehicle and some of the practical problems that will be encountered in the development of this engine.


Author(s):  
Nanahisa Sugiyama

A Performance Seeking Control (PSC) can realize the operations advantageous enough to accomplish the economy, safety, engine life, and environmental issues by reducing the control margin to the extremity together with selection of the control variables so that various kinds of parameters will be minimized or maximized. This paper describes the results obtained from the simulation study concerning the PSC aiming at the efficiency enhancement, power improvement, and longer engine life of a two-spool regenerative gas turbine engine having two control variables. By constructing the dynamic simulation of the engine, steady-state characteristics and dynamic characteristics are derived; then, a PSC system is designed and evaluated. It is concluded that the PSC for the gas turbine of this type can be realized by the turbine inlet temperature control.


Author(s):  
Youry A. Nozhnitsky ◽  
Youlia A. Fedina ◽  
Anatoly D. Rekin ◽  
Nickolai I. Petrov

For years of time there have been conducted the investigations of gas-turbine engine parts made of carbon-carbon and ceramic materials. This paper presents mainly the results of works done to create engine components of ceramic materials. There are given the investigation results on development of equipment and methods intended for use in determining the characteristics of heat-resistant non-metallic materials under ultra high temperature conditions. The unique tooling is developed to be used for conducting mechanical tests in different conditions (vacuum, protective medium, air) at temperatures up to 2200°C. There are considered three possible fields of application of ceramic materials, that are, turbine (1), combustion chamber and other stator components operating at high temperatures (2), bearings (3). Different ceramic elements are designed and manufactured, their structural strength is investigated in the laboratory faculties and also as part of engine gas generators.


Author(s):  
Kozi Nishio ◽  
Junzo Fujioka ◽  
Tetsuo Tatsumi ◽  
Isashi Takehara

With the aim of achieving higher efficiency, lower pollutant emissions, and multi-fuel capability for small to medium-sized gas turbine engines for use in co-generation systems, a ceramic gas turbine (CGT) research and development program is being promoted by the Japanese Ministry of International Trade and Industry (MITI) as a part of its “New Sunshine Project”. Kawasaki Heavy Industries (KHI) is participating in this program and developing a regenerative two-shaft CGT (CGT302). In 1993, KHI conducted the first test run of an engine with full ceramic components. At present, the CGT302 achieves 28.8% thermal efficiency at a turbine inlet temperature (TIT) of 1117°C under ISO standard conditions and an actual TIT of 1250°C has been confirmed at the rated speed of the basic CGT. This paper consists of the current state of development of the CGT302 and how ceramic components are applied.


1993 ◽  
Author(s):  
J. Mark Battison

Williams International has been actively investigating the use of ceramic materials in gas turbine engines for over 10 years. Ceramic component applications include both static and dynamic components such as combustors and turbine rotors. Component stresses, material properties, and cost, dictate attachment strategies. Non-metallic turbines with metal-to-non-metallic attachment schemes have been successfully demonstrated. This paper reviews a progression of attachment strategies that eventually led to a successful test of a non-metallic turbine in a gas turbine engine.


Author(s):  
Tsubura Nishiyama ◽  
Masumi Iwai ◽  
Norio Nakazawa ◽  
Masafumi Sasaki ◽  
Haruo Katagiri ◽  
...  

The seven-year program, designated “Research & Development of Automotive Ceramic Gas Turbine Engine (CGT Program)”, was started in 1990 with the object of demonstrating the advantageous potentials of ceramic gas turbines for automotive use. This CGT Program is conducted by Petroleum Energy Center. The basic engine is a 100kW, single-shaft regenerative engine having turbine inlet temperature of 1350°C and rotor speed of 110000rpm. In the forth year of the program, the engine components were experimentally evaluated and improved in the various test rigs, and the first assembly test including rotating and stationary components, was performed this year under the condition of turbine inlet temperature of 1200°C.


Author(s):  
Michael P. Enright ◽  
R. Craig McClung ◽  
Luc Huyse

Rare anomalies may be introduced during the metallurgical or manufacturing processes that may lead to uncontained failures of aircraft gas turbine engines. The risk of fracture associated with these anomalies can be quantified using a probabilistic fracture mechanics approach. In this paper, a general probabilistic framework is presented for risk assessment of gas turbine engine components subjected to either inherent or induced material anomalies. A summary of efficient computational methods that are applicable to this problem is also provided.


Author(s):  
J. R. Palmer ◽  
Yong-Gen Gu

This paper presents a computer model called ‘TURBOTEST’ which is applicable both to analysis of gas turbine engine rig tests and to simulation of engine steady-state performance. As with the earlier ‘TURBOFLEXI’ model a wide range of gas turbine engines can be simulated, using any kind of hydrocarbon fuel, and allowing for chemical dissociation of the gas, and for the effect of air humidity. In addition, however, for the particular requirements of rig test analysis, the following new features have been developed and incorporate:- (a) It can carry out rig test analysis for a wide range of gas turbine engines if all the necessary test data are presented. (b) If the test data is incomplete, a computer simulation of the engine can be used to complete the analysis. (c) Performance deterioration of engine components can be detected by comparing the results of a test analysis and of a parallel simulation using stored characteristics of engine components in the “as new” condition. The program has been tested on simulated test data generated by engine models such as a turbojet and a turbofan. The results show it has close and repeatable agreement with design values. Further tests of the model have been carried out by applying it to the actual engine rig test data.


Author(s):  
N. Sourial

Today’s high technology gas turbine engines incorporate the world’s most exotic alloys and are built to some of the most precise dimensional tolerances encountered in any industry. The constant drive for increased performance while substantially reducing fuel consumption and weight has pushed engine components and their designers to limits never before realized. To achieve these limits new methods and materials have evolved; not exclusively in the production of the engines but also in the repair and maintenance of them. The typical problems encountered in repair and maintenance are numerous and varied as are their solutions. This paper, however, will concentrate on one in particular and that is the typical damage encountered on a first stage power turbine vane ring and the technology employed to repair such damage. The vane ring was chosen because it is representative of a common problem encountered by all gas turbine engine manufacturers and simultaneously involves some of the most up to date repair techniques to restore it.


Sign in / Sign up

Export Citation Format

Share Document