Salt in Sea Atmosphere and its Removal for Gas Turbines

Author(s):  
K. Yoshimoto ◽  
Y. Hirata ◽  
M. Chiba

Concentration and size distribution of sea salt particles in air were investigated aboard four different ships (a 10,000-GT class cargo carrier, a 200,000-DWT class oil tanker, and two destroyer-escorts) under various conditions of weather and maneuvering of ships. The data for the concentration and size distribution were converted into basic design data in the light of theories of geophysics. In the meanwhile, the performance characteristics of the demister elements (the fibrous filter and the vane separator), e.g., the pressure loss and collection efficiencies for the particle size in mist, were determined by bench tests. Based on those findings, a demister system applicable to actual ships was proposed, and its performance was predicted for various weather conditions.

Author(s):  
W. Tabakoff ◽  
A. Hamed ◽  
M. Metwally

This work presents the results of an investigation conducted to study the effect of coal ash particles size distribution on the particle dynamics, and the resulting blade erosion in axial flow gas turbines. The particle dynamics and their blade impacts are determined from a three dimensional trajectory analysis within the turbine blade passages. The particle rebound conditions and the blade material erosion characteristics are simulated using empirical equations, derived from experimental measurements. For the typical ash particle size distribution considered in this investigation, the results demonstrate that the size distribution has a significant influence on the blade erosion intensity and pattern.


1991 ◽  
Vol 113 (4) ◽  
pp. 607-615 ◽  
Author(s):  
W. Tabakoff ◽  
A. Hamed ◽  
M. Metwally

This work presents the results of an investigation conducted to study the effect of coal ash particle size distribution on the particle dynamics, and the resulting blade erosion in axial flow gas turbines. The particle dynamics and their blade impacts are determined from a three-dimensional trajectory analysis within the turbine blade passages. The particle rebound conditions and the blade material erosion characteristics are simulated using empirical equations, derived from experimental measurements. For the typical ash particle size distribution considered in this investigation, the results demonstrate that the size distribution has a significant influence on the blade erosion intensity and pattern.


2020 ◽  
Vol 69 (4) ◽  
pp. 102-106
Author(s):  
Shota Ohki ◽  
Shingo Mineta ◽  
Mamoru Mizunuma ◽  
Soichi Oka ◽  
Masayuki Tsuda

1995 ◽  
Vol 5 (1) ◽  
pp. 75-87 ◽  
Author(s):  
Christine M. Woodall ◽  
James E. Peters ◽  
Richard O. Buckius

1998 ◽  
Vol 84 (5) ◽  
pp. 387-392 ◽  
Author(s):  
Takashi INOUE ◽  
Yuzo HOSOI ◽  
Koe NAKAJIMA ◽  
Hiroyuki TAKENAKA ◽  
Tomonori HANYUDA

Sign in / Sign up

Export Citation Format

Share Document