scholarly journals The Role of the Recuperator in High Performance Gas Turbine Applications

1978 ◽  
Author(s):  
C. F. McDonald

With soaring fuel costs and diminishing clean fuel availability, the efficiency of the industrial gas turbine must be improved by utilizing the exhaust waste heat by either incorporating a recuperator or by co-generation, or both. In the future, gas turbines for power generation should be capable of operation on fuels hitherto not exploited in this prime-mover, i.e., coal and nuclear fuel. The recuperative gas turbine can be used for open-cycle, indirect cycle, and closed-cycle applications, the latter now receiving renewed attention because of its adaptability to both fossil (coal) and nuclear (high temperature gas-cooled reactor) heat sources. All of these prime-movers require a viable high temperature heat exchanger for high plant efficiency. In this paper, emphasis is placed on the increasingly important role of the recuperator and the complete spectrum of recuperative gas turbine applications is surveyed, from lightweight propulsion engines, through vehicular and industrial prime-movers, to the large utility size nuclear closed-cycle gas turbine. For each application, the appropriate design criteria, types of recuperator construction (plate-fin or tubular etc.), and heat exchanger material (metal or ceramic) are briefly discussed.

2009 ◽  
Vol 13 (4) ◽  
pp. 41-48
Author(s):  
Zheshu Ma ◽  
Zhenhuan Zhu

Indirectly or externally-fired gas-turbines (IFGT or EFGT) are novel technology under development for small and medium scale combined power and heat supplies in combination with micro gas turbine technologies mainly for the utilization of the waste heat from the turbine in a recuperative process and the possibility of burning biomass or 'dirty' fuel by employing a high temperature heat exchanger to avoid the combustion gases passing through the turbine. In this paper, by assuming that all fluid friction losses in the compressor and turbine are quantified by a corresponding isentropic efficiency and all global irreversibilities in the high temperature heat exchanger are taken into account by an effective efficiency, a one dimensional model including power output and cycle efficiency formulation is derived for a class of real IFGT cycles. To illustrate and analyze the effect of operational parameters on IFGT efficiency, detailed numerical analysis and figures are produced. The results summarized by figures show that IFGT cycles are most efficient under low compression ratio ranges (3.0-6.0) and fit for low power output circumstances integrating with micro gas turbine technology. The model derived can be used to analyze and forecast performance of real IFGT configurations.


Author(s):  
A.A. Filimonova ◽  
◽  
N.D. Chichirova ◽  
A.A. Chichirov ◽  
A.A. Batalova ◽  
...  

The article provides an overview of modern high-performance combined-cycle plants and gas turbine plants with waste heat boilers. The forecast for the introduction of gas turbine equipment at TPPs in the world and in Russia is presented. The classification of gas turbines according to the degree of energy efficiency and operational characteristics is given. Waste heat boilers are characterized in terms of design and associated performance and efficiency. To achieve high operating parameters of gas turbine and boiler equipment, it is necessary to use, among other things, modern water treatment equipment. The article discusses modern effective technologies, the leading place among which is occupied by membrane, and especially baromembrane methods of preparing feed water-waste heat boilers. At the same time, the ion exchange technology remains one of the most demanded at TPPs in the Russian Federation.


Author(s):  
A. Montakhab

Because of its relatively high coolant temperature, the closed cycle gas turbine HTGR is well adapted to dry cooling and its waste heat can be rejected with relatively low cost. The preliminary design of natural-draft dry cooling towers for a 1200 MW(e) GT-HTGR is presented. The effects of air approach velocity, capacity rates of air and water mediums, and number of heat exchanger cross flow passes on salient tower and heat exchanger dimensions are studied. Optimum tower designs are achieved with three cross flow passes for the heat exchanger, resulting in a simultaneous minimization of tower height, heat exchanger surface area and circulating water pumping power. Four alternative tower designs are considered and their relative merits are compared. It is concluded that the 1200 MW(e) plant can be cooled by a single tower design which is well within the present state of the natural-draft dry cooling tower technology. In comparison, the fossil-fired or HTGR steam plants of the same output is shown to need three such towers.


1979 ◽  
Author(s):  
H. C. Daudet ◽  
C. A. Kinney

This paper presents a discussion of the significant results of a study program conducted for the Department of Energy to evaluate the potential for closed cycle gas turbines and the associated combustion heater systems for use in coal fired public utility power plants. Two specific problem areas were addressed: (a) the identification and analysis of system concepts which offer high overall plant efficiency consistent with low cost of electricity (COE) from coal-pile-to-bus-bar, and (b) the identification and conceptual design of combustor/heat exchanger concepts compatible for use as the cycle gas primary heater for those plant systems. The study guidelines were based directly upon the ground rules established for the ECAS studies to facilitate comparison of study results. Included is a discussion of a unique computer model approach to accomplish the system analysis and parametric studies performed to evaluate entire closed cycle gas turbine utility power plants with and without Rankine bottoming cycles. Both atmospheric fluidized bed and radiant/convective combustor /heat exchanger systems were addressed. Each incorporated metallic or ceramic heat exchanger technology. The work culminated in conceptual designs of complete coal fired, closed cycle gas turbine power plants. Critical component technology assessment and cost and performance estimates for the plants are also discussed.


Author(s):  
Colin F. McDonald

With the capability of burning a variety of fossil fuels, giving high thermal efficiency, and operating with low emissions, the gas turbine is becoming a major prime-mover for a wide spectrum of applications. Almost three decades ago two experimental projects were undertaken in which gas turbines were actually operated with heat from nuclear reactors. In retrospect, these systems were ahead of their time in terms of technology readiness, and prospects of the practical coupling of a gas turbine with a nuclear heat source towards the realization of a high efficiency, pollutant free, dry-cooled power plant has remained a long-term goal, which has been periodically studied in the last twenty years. Technology advancements in both high temperature gas-cooled reactors, and gas turbines now make the concept of a nuclear gas turbine plant realizable. Two possible plant concepts are highlighted in this paper, (1) a direct cycle system involving the integration of a closed-cycle helium gas turbine with a modular high temperature gas cooled reactor (MHTGR), and (2) the utilization of a conventional and proven combined cycle gas turbine, again with the MHTGR, but now involving the use of secondary (helium) and tertiary (air) loops. The open cycle system is more equipment intensive and places demanding requirements on the very high temperature heat exchangers, but has the merit of being able to utilize a conventional combined cycle turbo-generator set. In this paper both power plant concepts are put into perspective in terms of categorizing the most suitable applications, highlighting their major features and characteristics, and identifying the technology requirements. The author would like to dedicate this paper to the late Professor Karl Bammert who actively supported deployment of the closed-cycle gas turbine for several decades with a variety of heat sources including fossil, solar, and nuclear systems.


Author(s):  
Werner F. Malewski ◽  
Günther M. Holldorff

Using heat energy from the tail-end of gas turbine exhaust, an ammonia absorption refrigeration system can precool the inlet air to a temperature slightly above the freezing point of the air humidity. The concept is described and shows how it indicates a significant increase of gas turbine power output, depending on ambient conditions.


Author(s):  
C. F. McDonald

The current energy crisis and substantial increases in the costs of liquid and gaseous fuels, combined with reduced pollutant emission requirements, make the higher efficiency recuperative gas turbine cycle economically attractive for industrial and vehicular application. For future low cost, high temperature, small gas turbines, with improved cycle efficiencies, it is postulated that the complete hot section of the engine (combustor, ducts, turbine nozzle and rotor) will be all ceramic and may include a ceramic heat exchanger. Few of the answers are available today in the areas of ceramic recuperator performance, cost and structural integrity and concentrated development efforts are required to demonstrate the viability of a fixed boundary ceramic gas turbine heat exchanger. This paper briefly outlines possible design and development trends in the areas of exchanger configuration, surface geometry and materials, and it includes specific sizes and economic aspects of ceramic recuperators for future advanced low SFC gas turbines.


1977 ◽  
Vol 99 (2) ◽  
pp. 237-245 ◽  
Author(s):  
C. F. McDonald ◽  
T. Van Hagan ◽  
K. Vepa

The Gas Turbine High Temperature Gas Cooled Reactor (GT-HTGR) power plant combines the existing design HTGR core with a closed-cycle helium gas turbine power conversion system directly in the reactor primary circuit. Unlike open-cycle gas turbines where the recuperative heat exchanger is an optional component, the high cycle efficiency of the nuclear closed-cycle gas turbine is attributable to a high degree to the incorporation of the recuperator (helium-to-helium) and precooler (helium-to-water) exchangers in the power conversion loop. For the integrated plant configuration, a nonintercooled cycle with a high degree of heat recuperation was selected on the basis of performance and economic optimization studies. A recuperator of high effectiveness was chosen because it significantly reduces the optimum pressure ratio (for maximum cycle efficiency), and thus reduces the number of compressor and turbine stages for the low molecular weight, high specific heat, helium working fluid. Heat rejection from the primary system is effected by a helium-to-water precooler, which cools the gas to a low level prior to compression. The fact that the rejection heat is derived from the sensible rather than the latent heat of the cycle working fluid results in dissipation over a wide band of temperature, the high average rejection temperature being advantageous for either direct air cooling or for generation of power in a waste heat cycle. The high heat transfer rates in the recuperator (3100 MWt) and precooler (1895 MWt), combined with the envelope restraints associated with heat exchanger integration in the prestressed concrete reactor vessel, require the use of more compact surface geometries than in contemporary power plant steam generators. Various aspects of surface geometry, flow configuration, mechanical design, fabrication, and integration of the heat exchangers are discussed for a plant in the 1100 MWe class. The influence of cycle parameters on the relative sizes of the recuperator and precooler are also presented. While the preliminary designs included are not meant to represent final solutions, they do embody features that satisfy many of the performance, structural, safety, and economic requirements.


2002 ◽  
Vol 125 (1) ◽  
pp. 246-251 ◽  
Author(s):  
W. J. Evans ◽  
J. P. Jones ◽  
M. R. Bache

The high-temperature fatigue response of titanium and nickel alloys destined for high-performance gas turbine applications is considered with particular emphasis given to the role of creep and environmental damage during crack growth. In an attempt to partition the respective contributions from these two rate controlling factors, data are presented for a range of temperature, stress ratio, and pressure conditions. The implications for the extended use of such alloys in future gas turbine designs are discussed.


Sign in / Sign up

Export Citation Format

Share Document