scholarly journals Power Increase of Gas Turbines by Inlet Air Pre-Cooling With Absorption Refrigeration Utilizing Exhaust Waste Heat

Author(s):  
Werner F. Malewski ◽  
Günther M. Holldorff

Using heat energy from the tail-end of gas turbine exhaust, an ammonia absorption refrigeration system can precool the inlet air to a temperature slightly above the freezing point of the air humidity. The concept is described and shows how it indicates a significant increase of gas turbine power output, depending on ambient conditions.

Author(s):  
Jamal N. Al-Bortmany

Power providers in Oman encounter the greatest demand for electricity during the summer months. More than 70% of Oman electric power originate from gas turbines. Unfortunately, the power output of gas turbines decreases with increasing ambient temperature. The growth in electricity generation to the summer peak load has been achieved at a very high cost of installing new generators. This paper presents an assessment of using the exhaust heat to run an aqua-ammonia refrigeration system to cool the inlet air. The performance of two General Electric aeroderivative gas turbines, the LM2500+ and the LM1600, with and without absorption refrigeration was investigated. Climate data series from Fahud, central Oman, was used for modeling the variations in ambient temperature during the year to account for the effects of climate condition in the gas turbine performance simulation. Most of the gas turbines in Oman operate on a simple cycle with exhaust heat discharged to the atmosphere. Vapor absorption refrigeration system uses heat from gas turbine exhaust as its source of energy to cool the inlet ambient air to 7°C. It was observed that the available exhaust heat from the gas turbine exceeded the heat required to run the aqua-ammonia absorption refrigeration system. For meteorological conditions existing in the particular site considered in Oman, pre-cooling gas turbine inlet air to 7°C augments power, on a yearly basis, of LM2500+ and LM1600 by 20% and 14% respectively. During the peak hours in summer months, when power is mostly needed, the percentage of power augmented climbed to 39% and 33% for the two gas turbines. It has been concluded that chilling the inlet air of the gas turbine with aqua-ammonia absorption refrigeration is technically feasible and economically appealing.


1978 ◽  
Author(s):  
C. F. McDonald

With soaring fuel costs and diminishing clean fuel availability, the efficiency of the industrial gas turbine must be improved by utilizing the exhaust waste heat by either incorporating a recuperator or by co-generation, or both. In the future, gas turbines for power generation should be capable of operation on fuels hitherto not exploited in this prime-mover, i.e., coal and nuclear fuel. The recuperative gas turbine can be used for open-cycle, indirect cycle, and closed-cycle applications, the latter now receiving renewed attention because of its adaptability to both fossil (coal) and nuclear (high temperature gas-cooled reactor) heat sources. All of these prime-movers require a viable high temperature heat exchanger for high plant efficiency. In this paper, emphasis is placed on the increasingly important role of the recuperator and the complete spectrum of recuperative gas turbine applications is surveyed, from lightweight propulsion engines, through vehicular and industrial prime-movers, to the large utility size nuclear closed-cycle gas turbine. For each application, the appropriate design criteria, types of recuperator construction (plate-fin or tubular etc.), and heat exchanger material (metal or ceramic) are briefly discussed.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shuai Du

Ammonia water absorption refrigeration systems are effective in utilizing fishing-boat exhaust waste heat for cryopreservation. However, the liquid level control and the use of a solution pump characterized by small flowrate and high-pressure head result in poor reliability in the traditional system. Besides, the system must necessarily be designed anti-swaying and anti-corrosion. This paper proposes a forced flow diffusion absorption refrigeration system, in which an inherently leak-free canned motor pump and an ejector are employed to provide the driving forces of the gas and liquid loops. The approximate single pressure operation allows for a simple passive liquid sealing control without throttling valves. The system adopts an integrated cooling strategy which allows the system to operate under swaying conditions, and the external seawater cooled heat exchanger avoids internal corrosion and leakage. The thermal analysis shows the system is valid to be operated under wide operating conditions, and the coupled gas and solution circulation ratios determined the performance of the novel system. There is an optimal ammonia mass fraction difference in the gas loop to obtain the optimal COP. The COP reaches 0.4 when the temperatures at the outlets of the generator, evaporator, absorber, and condenser are 160, −15, 35, and 35°C, respectively. The novel system provides a reliable absorption refrigeration system design for fishing-boat applications.


Author(s):  
R. J. Swofford

Gas-turbine-driven generating facilities have been installed at the Houston refinery/chemical plant complex of Shell Oil Company to supply electric power to electrolytic cells on a new chlorine plant. The power plant consists of two gas turbines site rated at 15,500 hp, with 1900-hp helper steam turbines driving 3600-rpm generators. The waste-heat boilers used to recover heat from the gas turbine exhaust are equipped with duct burners for steam temperature control and feature two stages of economizer coils. This paper includes a description of the cycle and aspects relating to the initial operation of the equipment.


Author(s):  
Donald C. Erickson ◽  
Icksoo Kyung ◽  
G. Anand ◽  
E. E. Makar

The emerging Distributed Energy Resources (DER) program envisions extensive use of small to midsize turbines for on-site power production. Their output decreases substantially at warm ambient conditions when it is most needed. Therefore inlet air cooling had received much scrutiny as a way to avoid this degradation. This study examines three approaches to inlet air cooling: evaporative cooling; mechanical vapor compression refrigeration; and waste heat powered absorption refrigeration. The benefits and limitations of each process were documented. Ammonia absorption refrigeration is shown to deliver the greatest benefit to continuosly operating turbines at very favorable installed and operating cost. The most economical process identified included an ammonia refrigeration cycle integrated directly into the combustion turbine cycle. This cycle was designed and modeled, and analyzed with ambient temperature conditions for six geographic areas (Boston, Atlanta, Los Angeles, Honolulu, Phoenix, and Chicago). Annual benefits for each area are detailed.


Author(s):  
James A. Boatright

This paper presents a unique application of two 14,200-hp gas turbines and their associated waste heat-recovery boilers in a refinery modernization program. It summarizes economics, design, and operating experience. Special emphasis is placed on three unusual features: (1) oversized starting turbines used as helpers; (2) control of two drivers with one governor; and (3) use of gas-turbine exhaust as combustion air, backed up by a forced-draft fan running at full speed against a closed damper.


Author(s):  
A.A. Filimonova ◽  
◽  
N.D. Chichirova ◽  
A.A. Chichirov ◽  
A.A. Batalova ◽  
...  

The article provides an overview of modern high-performance combined-cycle plants and gas turbine plants with waste heat boilers. The forecast for the introduction of gas turbine equipment at TPPs in the world and in Russia is presented. The classification of gas turbines according to the degree of energy efficiency and operational characteristics is given. Waste heat boilers are characterized in terms of design and associated performance and efficiency. To achieve high operating parameters of gas turbine and boiler equipment, it is necessary to use, among other things, modern water treatment equipment. The article discusses modern effective technologies, the leading place among which is occupied by membrane, and especially baromembrane methods of preparing feed water-waste heat boilers. At the same time, the ion exchange technology remains one of the most demanded at TPPs in the Russian Federation.


Author(s):  
W. V. Hambleton

This paper represents a study of the overall problems encountered in large gas turbine exhaust heat recovery systems. A number of specific installations are described, including systems recovering heat in other than the conventional form of steam generation.


Sign in / Sign up

Export Citation Format

Share Document