Design and Test of Non-Rotating Ceramic Gas Turbine Components

Author(s):  
André L. Neuburger ◽  
Gilles Carrier

This paper deals with elements of an on-going ceramics research and development program at a major manufacturer of turbine engines for general aviation and commuter aircraft. The program comprises design and test of non-rotating, ceramic components for two widely used turboprop engines. The design, analysis and test of three components are discussed: a simple ceramic turbine shroud, a metal and ceramic turbine shroud, and an all ceramic nozzle vane assembly. Fabrication and assembly of these components are described. A discussion of non-destructive evaluation and component prooftesting includes a prooftest strategy that seeks to retain the stronger half of a sample of specimens. Candidate ceramics, silicon carbide and silicon nitride, are assessed and chosen as the shroud and vane materials. The paper also includes assessment of improvements in fuel efficiency, specific power and operating cost, some based on test results and some on analysis.

Author(s):  
Kozi Nishio ◽  
Junzo Fujioka ◽  
Tetsuo Tatsumi ◽  
Isashi Takehara

With the aim of achieving higher efficiency, lower pollutant emissions, and multi-fuel capability for small to medium-sized gas turbine engines for use in co-generation systems, a ceramic gas turbine (CGT) research and development program is being promoted by the Japanese Ministry of International Trade and Industry (MITI) as a part of its “New Sunshine Project”. Kawasaki Heavy Industries (KHI) is participating in this program and developing a regenerative two-shaft CGT (CGT302). In 1993, KHI conducted the first test run of an engine with full ceramic components. At present, the CGT302 achieves 28.8% thermal efficiency at a turbine inlet temperature (TIT) of 1117°C under ISO standard conditions and an actual TIT of 1250°C has been confirmed at the rated speed of the basic CGT. This paper consists of the current state of development of the CGT302 and how ceramic components are applied.


Author(s):  
Masaru Sakakida ◽  
Tadashi Sasa ◽  
Kazuho Akiyama ◽  
Shinya Tanaka

CGT 301 is a recuperated, single-shaft, ceramic gas turbine for cogeneration capable of continuous full load application. In order to reduce its size, thermal stress, and deformations, ceramic parts are designed axi-symmetrically. The combustor is located on a shaft axis just before the turbine, therefore it does not have a large scroll. The turbine is a two-stage axial flow-type with ceramic blades. For the first phase of the program, the primary-type gas turbine with all-metallic parts was fabricated and tested under various conditions. The test results confirmed the rotation stability of the gas turbine. After the test of preliminary metallic gas turbine, all-ceramic parts were fabricated and various tests were carried out to confirm their reliability. The configuration and structure of the ceramic turbine were improved based on the data obtained from the tests of the primary-type gas turbine and the fundamental tests for ceramic components. The primary-type ceramic gas turbine of TIT 1200°C was designed and fabricated for the second phase of the program. This paper outlines the concept of the ceramic component design, test results of ceramic parts in the hot section, and the engine test.


Author(s):  
Oscar Jimenez ◽  
Hamid Bagheri ◽  
John McClain ◽  
Ken Ridler ◽  
Tibor Bornemisza

The Ceramic Stationary Gas Turbine (CSGT) Development Program was performed under the sponsorship of the United States Department of Energy (DOE), Office of Industrial Technologies (OIT). The goal was to improve the performance (fuel efficiency, output power, and exhaust emissions) of stationary gas turbines in cogeneration through the selective replacement of hot section metallic components with ceramic components. The team was headed by Solar Turbines Incorporated and supported by ceramic component suppliers and national research institutes. The team performed a detailed engine and component design, fabrication, and field-testing of ceramic components. This program culminated in an engine test at 1121°C (2050°F) TRIT. This was a major challenge in that the engine ran with a continuous fiber reinforced ceramic composite liner (CFCC) and with silicon nitride (Si3N4) stage one ceramic blades and nozzles. The design and testing of all three components will be discussed in this paper, with emphasis on the ceramic nozzles. Another test that will be discussed in this paper is a heavily instrumented engine test that took place prior to the test mentioned above. This instrumented engine test was performed in order to better understand the temperature effects between the ceramic and metallic component interfaces. The results from this were then used to correlate the analytical model with test data. This led to additional design changes to the outer and inner shroud ceramic / metallic interfaces, as well as ceramic nozzles, fabricated from Kyocera SN 282 silicon nitride material. These nozzle changes were then engine tested successfully for a total of 100 hours at full load [1010°C (1850°F) TRIT and 100% speed]. During the engine test, the firing temperature was increased to 1121°C (2050°F) TRIT for an adequate duration to ensure meaningful performance data were gathered.


Author(s):  
Al Behbahani ◽  
Eric A. Jordan ◽  
Richard Millar

Turbine engine controllers are typically designed and operated to meet required or desired performance criterion within stability margins, while maximizing fuel efficiency. The U.S. Air Force turbine engine research program is seeking to incorporate sustainable cost reduction into this approach, by considering a life-cycle design objective if the life of the engine is considered as an objective during the design of the engine controller. Specifically during aircraft takeoff, the turbine engines are subject to high temperature variations that aggravate the stress of the material used in their construction and thus a negative effect in their life spans. Therefore, the control strategy needs to be re-evaluated to include operating cost, and extending the life of the engine is one way to reduce that. Life-Extending Control (LEC) is an area that deals with control action, engine component life usage, and designing an intelligent control algorithm embedded in the FADEC. This paper evaluates the LEC, based on critical components research, to demonstrate how an intelligent engine control algorithm can drastically reduce the engine life usage, with minimum sacrifice in performance. Finally, a generic turbine engine is extensively simulated using a sophisticated non-linear model of the turbine engine. The paper concludes that LEC is worth consideration and further research should include development of the damage models for turbine engines, and experimental research that could correlate the damage models to actual damage for turbine engines. This could lead to implementation of online damage models in real-time that will allow for more robust damage prevention.


1975 ◽  
Author(s):  
E. A. Fisher

This paper reviews the fabrication of technical ceramic components. The basic functions of the various steps in the fabrication process are outlined, including materials preparation, forming, sintering, and final machining. The advantages and limitations of various forming methods are discussed, as is the application of quality control and non-destructive evaluation. Since the use of ceramic components for high temperature gas turbine engines is a promising development, this paper provides an overview of fabrication processes which may come into widespread use for manufacturing such components.


Author(s):  
Sanjay ◽  
Onkar Singh ◽  
B. N. Prasad

This paper deals with the thermodynamic performance of complex gas turbine cycles involving inter-cooling, re-heating and regeneration. The performance has been evaluated based on the mathematical modeling of various elements of gas turbine for the real situation. The fuel selected happens to be natural gas and the internal convection / film / transpiration air cooling of turbine bladings have been assumed. The analysis has been applied to the current state-of-the-art gas turbine technology and cycle parameters in four classes: Large industrial, Medium industrial, Aero-derivative and Small industrial. The results conform with the performance of actual gas turbine engines. It has been observed that the plant efficiency is higher at lower inter-cooling (surface), reheating and regeneration yields much higher efficiency and specific power as compared to simple cycle. There exists an optimum overall compression ratio and turbine inlet temperature in all types of complex configuration. The advanced turbine blade materials and coating withstand high blade temperature, yields higher efficiency as compared to lower blade temperature materials.


Sign in / Sign up

Export Citation Format

Share Document