scholarly journals 300 kW Class Ceramic Gas Turbine Development (CGT 301)

Author(s):  
Masaru Sakakida ◽  
Tadashi Sasa ◽  
Kazuho Akiyama ◽  
Shinya Tanaka

CGT 301 is a recuperated, single-shaft, ceramic gas turbine for cogeneration capable of continuous full load application. In order to reduce its size, thermal stress, and deformations, ceramic parts are designed axi-symmetrically. The combustor is located on a shaft axis just before the turbine, therefore it does not have a large scroll. The turbine is a two-stage axial flow-type with ceramic blades. For the first phase of the program, the primary-type gas turbine with all-metallic parts was fabricated and tested under various conditions. The test results confirmed the rotation stability of the gas turbine. After the test of preliminary metallic gas turbine, all-ceramic parts were fabricated and various tests were carried out to confirm their reliability. The configuration and structure of the ceramic turbine were improved based on the data obtained from the tests of the primary-type gas turbine and the fundamental tests for ceramic components. The primary-type ceramic gas turbine of TIT 1200°C was designed and fabricated for the second phase of the program. This paper outlines the concept of the ceramic component design, test results of ceramic parts in the hot section, and the engine test.

Author(s):  
Takao Mikami ◽  
Shinya Tanaka ◽  
Masashi Tatsuzawa ◽  
Takeshi Sakida

The CGT301 ceramic gas turbine is being developed under a contract from NEDO as a part of the New Sunshine Program of MTTI to improve the performance of gas turbines for cogeneration through the replacement of hot section components with ceramic parts. The project is conducted in three phases. The project currently in Phase 2 focuses on the development of the “primary type” ceramic gas turbine (turbine inlet temperature: 1,200°C). CGT301 is a recuperated, single-shaft, ceramic gas turbine. The turbine is a two-stage axial flow type. The major effort has been on the development of the turbine which consists of metallic disks and inserted ceramic blades (“hybrid rotor”). Prior to engine tests, component tests were performed on the hybrid rotor to prove the validity of the design concepts and their mechanical integrity. The engine equipped with all ceramic components except the second stage turbine blades was tested and evaluated. The engine was operated successfully for a total of 23 hours without failure at the rated engine speed of 56,000 rpm with the turbine inlet temperature of 1,200 °C. Further, the engine equipped with all ceramic components was successfully tested for one hour under the same conditions. Engine testing of the “primary type” ceramic gas turbine is continuing to improve the performance and the reliability of the system for the purpose of moving forward to the development of the “pilot” ceramic gas turbine (turbine inlet temperature: 1,350 °C) as the final target of this project. This paper summarizes the progress in the development of the CGT301 with the emphasis on the test results of the hybrid rotor.


Author(s):  
M. L. Easley ◽  
J. R. Smyth

Under the U.S. Department Of Energy/National Aeronautics and Space Administration (DOE/NASA) funded Ceramic Turbine Engine Demonstration Program, AlliedSignal Engines is addressing the remaining critical concerns slowing the commercialization of structural ceramics in gas turbine engines. These issues include demonstration of ceramic component reliability, readiness of ceramic suppliers to support ceramic production needs, and enhancement of ceramic design methodologies. The AlliedSignal/Garrett Model 331-200[CT] Auxiliary Power Unit (APU) is being used as a ceramics test bed engine. For this program, the APU First-stage turbine blades and nozzles were redesigned using ceramic materials, employing the design methods developed during the earlier DOE/NASA funded Advanced Gas Turbine (AGT) and Advanced Turbine Technologies Application Project (ATTAP) programs. The present program includes ceramic component design, fabrication, and testing, including component bench tests and extended engine endurance testing and field testing. These activities will demonstrate commercial viability of the ceramic turbine application. In addition, manufacturing process scaleup for ceramic components to the minimum level for commercial viability will be demonstrated. Significant progress has been made during the past year. Engine testing evaluating performance with ceramic turbine nozzles has accumulated over 910 hours operation. Ceramic blade component tests were performed to evaluate the effectiveness of vibration dampers and high-temperature strain gages, and ceramic blade strength and impact resistance. Component design technologies produced impact-resistance design guidelines for inserted ceramic axial blades, and advanced the application of thin-film thermocouples and strain gages on ceramic components. Ceramic manufacturing scaleup activities were conducted by two ceramics vendors, Norton Advanced Ceramics (East Granby, CT) and AlliedSignal Ceramic Components (Torrance, CA). Following the decision of Norton Advanced Ceramics to leave the program, a subcontract was initiated with the Kyocera Industrial Ceramics Company Advanced Ceramics Technology Center (Vancouver, WA). The manufacturing scaleup program emphasizes improvement of process yields and increased production rates. Work summarized in this paper was funded by the U.S. Dept. Of Energy (DOE) Office of Transportation Technologies, part of the Turbine Engine Technologies Program, and administered by the NASA Lewis Research Center, Cleveland, OH under Contract No. DEN3-335.


Author(s):  
Mitsuru Hattori ◽  
Tsutomu Yamamoto ◽  
Keiichiro Watanabe ◽  
Masaaki Masuda

NGK Insulators, Ltd. (NGK) has undertaken the research and development on the fabrication processes of high-heat-resistant ceramic components for the CGT301, which is a 300kW recuperative industrial ceramic gas turbine engine. This program is under the New Sunshine Project, funded by the Ministry of International Trade and Industry (MITI), and has been guided by the Agency of Industrial Science & Technology (AIST) since 1988. The New Energy and Industrial Technology Development Organization (NEDO) is the main contractor. The fabrication techniques for ceramic components, such as turbine blades, turbine nozzles, combustor liners, gas-path parts, and heat exchanger elements, for the 1,200°C engine were developed by 1993. Development for the 1,350°C engine has been underway since 1994. The baseline conditions for fabricating of all ceramic components have been established. This paper reports on the development of ceramic gas turbine components, and the improved accuracies of their shapes as well as improved reliability from the results of the interim appraisal conducted in 1994.


Author(s):  
Mark van Roode ◽  
William D. Brentnall ◽  
Kenneth O. Smith ◽  
Bryan D. Edwards ◽  
Leslie J. Faulder ◽  
...  

The goal of the Ceramic Stationary Gas Turbine (CSGT) Development Program, under the sponsorship of the United States Department of Energy (DOE), Office of Industrial Technologies (OIT), is to improve the performance (fuel efficiency, output power, exhaust emissions) of stationary gas turbines in cogeneration through the selective replacement of hot section components with ceramic parts. The program, currently in Phase II focuses on detailed engine and component design, ceramic component fabrication and testing, establishment of a long term materials property data base, the development of supporting nondestructive evaluation (NDE) technologies, and the application of ceramic component life prediction. A 4000 hr engine field test is planned for Phase III of the program. This paper summarizes progress from January 1995 through January 1996. First generation designs of the primary ceramic components (first stage blades and nozzles, combustor liners) for the program engine, the Solar Centaur 50S, and of the secondary metallic components interfacing with the ceramic parts were completed. The fabrication of several components has been completed as well. These components were evaluated in rigs and the Centaur 50S test engine. NTI64 (Norton Advanced Ceramics) and GN-10 (AlliedSignal Ceramic Components) silicon nitride dovetail blades were cold and hot spin tested and engine tested at the baseline nominal turbine rotor inlet temperature (TRIT) of 1010°C. Full scale SiC/SiC continuous fiber-reinforced ceramic matrix composite (CFCC) liners (B.F. Goodrich Aerospace) were also rig tested and engine tested at the nominal baseline TRIT of 1010°C. One of the engine tests, incorporating both the GN-10 blades and the full scale SiC/SiC CFCC liners, was performed for 21.5 hrs (16 hrs at 100% load) with six start/stop cycles. A cumulative 24.5 hrs of engine testing was performed at the end of January, 1996. The ceramic components were in good condition following completion of the testing. Subscale Hexoloy® SA silicon carbide (Carborundum) and enhanced SiC/SiC CFCC (DuPont Lanxide Composites) and Al2O3/Al2O3 CFCC (Babcock & Wilcox) combustor liners were tested to evaluate mechanical attachment, durability and/or emissions reduction potential. The enhanced SiC/SiC CFCC of DuPont Lanxide Composites demonstrated superior durability in subscale combustor testing and this material was subsequently selected for the fabrication of full scale combustor liners for final engine rig testing in Phase II and field testing in Phase III of the program. Enhanced SiC/SiC CFCC liners also showed significantly reduced emissions of NOx and CO when compared with conventionally cooled subscale metallic liners. This observation is believed to apply generally to “hot wall” combustor substrates. The emissions results for the enhanced SiC/SiC CFCC liners were paralleled by similar emissions levels of NOx and CO monitored during engine testing with B.F. Goodrich Aerospace SiC/SiC CFCC combustor liners. NOx levels below 25 ppmv and CO levels below 10 ppmv were measured during the engine testing. Short term (1,000 hrs) creep testing of candidate ceramic materials under approximate nozzle “hot spot” conditions was completed and long term (5000–10,000 hrs) creep testing is in progress. The selected nozzle material, SN-88 silicon nitride, has survived over 5,500 hrs at 1288°C and 186 MPa stress at the end of January, 1996.


Author(s):  
André L. Neuburger ◽  
Gilles Carrier

This paper deals with elements of an on-going ceramics research and development program at a major manufacturer of turbine engines for general aviation and commuter aircraft. The program comprises design and test of non-rotating, ceramic components for two widely used turboprop engines. The design, analysis and test of three components are discussed: a simple ceramic turbine shroud, a metal and ceramic turbine shroud, and an all ceramic nozzle vane assembly. Fabrication and assembly of these components are described. A discussion of non-destructive evaluation and component prooftesting includes a prooftest strategy that seeks to retain the stronger half of a sample of specimens. Candidate ceramics, silicon carbide and silicon nitride, are assessed and chosen as the shroud and vane materials. The paper also includes assessment of improvements in fuel efficiency, specific power and operating cost, some based on test results and some on analysis.


1967 ◽  
Vol 89 (1) ◽  
pp. 165-170
Author(s):  
R. P. Allen ◽  
E. A. Butler

The potential advantages of an axial flow reversing marine gas turbine are presented in order to demonstrate the system’s aerodynamic and mechanical feasibility. From this analysis, it has been determined that such a system can be developed for operational use and will be competitive with other applicable thrust reversing mechanisms. The key to success of this system depends upon the establishment of a universally applicable calculation method for determining the rotation losses for backward-turning blades. A theory has been developed and utilized, with the predicted losses in good agreement with the limited test results that have been reported and are available. The aerodynamic and mechanical features developed for the reversing scheme are well within existing technology. Actual construction of a usable system depends primarily upon the increased demand for marine gas turbine propulsion equipment.


Author(s):  
Masashi Tatsuzawa ◽  
Tomoki Taoka ◽  
Takeshi Sakida ◽  
Shinya Tanaka

CGT301 is a recuperated, single-shaft ceramic gas turbine for co-generation use. Ceramic parts are used in the hot section of the engine, such as turbine blades, nozzle vanes, combustor liners, heat exchanger elements and gas path parts. These ceramic parts are designed axi-symmetrically to reduce their sizes and thermal stresses and to avoid their unexpected deformations. The turbine is a two-stage axial flow type. As a primary feature of this turbine, the rotors are composed of ceramic blades inserted into metallic disks. The ceramic parts of the engine system have been tested before installing them in the engine to assure their reliability in the following manner. The ceramic blades have been examined by hot-spin test with the gas temperature of 1100°C and up to 110% of the engine rated speed. The ceramic stationary parts such as nozzle vanes, combustor liners and gas path parts, have been assembled and installed in a test rig with almost the same constraint and thermal conditions as the engine, and thermal fatigue tests of 100 cycles between 1200°C and 300°C have been conducted. After the proof tests of ceramic parts, they have been installed in the engine, step by step. Finally, the engine has been operated with a TIT of 1200°C at the engine rated speed of 56000 rpm. The present paper describes the development process and shows test results of the ceramic gas turbine at a TIT of 1200°C.


Author(s):  
J. R. Smyth ◽  
R. E. Morey ◽  
R. W. Schultze

Under the ongoing DOE/NASA-funded Advanced Turbine Technology Applications Project (ATTAP), Garrett Auxiliary Power Division (GAPD) is continuing to address the issues of developing and applying structural ceramics to production gas turbine engines. Several critical technologies are being developed to advance this issue, including design methods development, component design, component fabrication, material characterization, and engine testing. The brittle nature of structural ceramics highlights concerns regarding impact damage. Through analysis and experimentation, design methods are being developed to improve the resistance of ceramic components to impact damage. Ceramic component designs now integrate these design methods into practice and proof testing methods are being developed to verify the results for actual engine components. Ceramic component fabrication processes are being optimized by selected subcontractors, resulting in deliveries of high-quality ceramic components which fully meet engine test needs. Verification of the component material properties is being achieved through comparisons of material property data from test bars cut from actual engine components with data generated from ceramic material test specimens. All these efforts are aimed at demonstrating endurance of the AGT101 all-ceramic turbine engine at the maximum operating temperature conditions up to 2500F (1371C). These critical ceramics technologies being developed under ATTAP are also providing a critical launch pad into production-oriented programs. GAPD has three concurrent programs underway, aimed at integrating ceramics into production Auxiliary Power Units (APUs). These include: installing and evaluating ceramic turbine nozzles under actual field conditions in a well-established product line (the 85 Series Ceramic Nozzle Demonstration Program); incorporating ceramic first-stage turbine stators and blades in a three-stage axial turbine APU (the 331-200 Ceramic Demonstration Program); and incorporation of a ceramic first-stage turbine stator in our latest APU design, the G250 Auxiliary Power Generation System (APGS) for the USAF F-22 fighter aircraft.


1989 ◽  
Vol 111 (1) ◽  
pp. 158-167 ◽  
Author(s):  
G. L. Boyd ◽  
D. M. Kreiner

The Garrett Turbine Engine Company/Ford Advanced Gas Turbine Program, designated AGT101, came to an end in June 1987. During this ceramic technology program, ceramic components were exposed to over 250 h of engine test. The 85-h test of the all-ceramic hot section to 1204C (2200F) was a significant accomplishment. However, this AGT101 test program also identified ceramic technology challenges that require continued development. These technology challenges are the basis for the five-year Advanced Turbine Technology Applications Project (ATTAP), which began in Aug. 1987. The objectives of this program include: (1) further development of analytical tools for ceramic component design utilizing the evolving ceramic material properties data base; (2) establishment of improved processes for fabricating advanced ceramic components; (3) development of improved procedures for testing ceramic components and test verification of design methods; and (4) evaluation of ceramic component reliability and durability in an engine environment. These activities are necessary to demonstrate that structural ceramic technology has the potential for competitive automotive engine life cycle cost and life.


Author(s):  
Jeffrey R. Price ◽  
Oscar Jimenez ◽  
Vijay Parthasarathy ◽  
Narendernath Miriyala

The Ceramic Stationary Gas Turbine (CSGT) program is being performed under the sponsorship of the United States Department of Energy, Office of Industrial Technologies. The objective of the program is to improve the performance of stationary gas turbines in cogeneration through the selective replacement of cooled metallic hot section components with uncooled ceramic parts. This review summarizes the progress on Phase III of the program which involves field testing of the ceramic components at a cogeneration end user site and characterization of the ceramic components following the field test exposure. The Solar Centaur 50S engine, which operates a turbine rotor inlet temperature (TRIT) of 1010°C (1850°F), was selected for the developmental program. The program goals include an increase in the TRIT to 1121°C (2050 °F), accompanied by increases in thermal efficiency and output power. This will be accomplished by the incorporation of uncooled ceramic first stage blades and nozzles, and a “hot wall” ceramic combustor liner. The performance improvements are attributable to the increase in TRIT and the reduction in cooling air requirements for the ceramic parts. The “hot wall” ceramic liners also enable a reduction in gas turbine emissions of NOx and CO. The component design and material selection have been definitized for the ceramic blades, nozzles and combustor liners. Each of these ceramic component designs were successfully tested in short term engine tests in the Centaur 50S engine test cell facility at Solar. Based on the results of the engine testing of the ceramic components, minor redesigns of the ceramic/metallic attachments were conducted where necessary. Based on their performance in a 100 hour cyclic in-house engine test, the ceramic components are approved for field testing. To date, four field installations of the CSGT Centaur 50S engine totaling over 4000 hours of operation have been initiated under the program at an industrial cogeneration site. This paper discusses the component design and material selection, in house engine testing, field testing, and component characterization.


Sign in / Sign up

Export Citation Format

Share Document