The Evolution of Thermal Barrier Coatings in Gas Turbine Engine Applications

Author(s):  
Susan Manning Meier ◽  
Dinesh K. Gupta

Thermal barrier coatings (TBCs) have been used for almost three decades to extend the life of combustors and augmentors and, more recently, stationary turbine components. Plasma sprayed yttria stabilized zirconia TBC currently is bill-of-material on many commercial jet engine parts. A more durable electron beam-physical vapor deposited (EB-PVD) ceramic coating recently has been developed for more demanding rotating as well as stationary turbine components. This ceramic EB-PVD is bill-of-material on turbine blades and vanes in current high thrust engine models and is being considered for newer developmental engines as well. To take maximum advantage of potential TBC benefits, the thermal effect of the TBC ceramic layer must become an integral element of the hot section component design system. To do this with acceptable reliability requires a suitable analytical life prediction model calibrated to engine experience. The latest efforts in thermal barrier coatings are directed toward correlating such models to measured engine performance.

1994 ◽  
Vol 116 (1) ◽  
pp. 250-257 ◽  
Author(s):  
S. M. Meier ◽  
D. K. Gupta

Thermal barrier coatings (TBCs) have been used for almost three decades to extend the life of combustors and augmentors and, more recently, stationary turbine components. Plasma-sprayed yttria-stabilized zirconia TBC currently is bill-of-material on many commercial jet engine parts. A more durable electron beam-physical vapor deposited (EB-PVD) ceramic coating recently has been developed for more demanding rotating as well as stationary turbine components. This ceramic EB-PVD is bill-of-material on turbine blades and vanes in current high thrust engine models and is being considered for newer developmental engines as well. To take maximum advantage of potential TBC benefits, the thermal effect of the TBC ceramic layer must become an integral element of the hot section component design system. To do this with acceptable reliability requires a suitable analytical life prediction model calibrated to engine experience. The latest efforts in thermal barrier coatings are directed toward correlating such models to measured engine performance.


Author(s):  
D. S. Duvall ◽  
D. L. Ruckle

The durability of plasma sprayed ceramic thermal barrier coatings subjected to cyclic thermal environments has been improved substantially by improving the strain tolerance of the ceramic structure and also by controlling the substrate temperature during the application of the coating. Improved strain tolerance was achieved by using ceramic structures with increased porosity, microcracking or segmentation. Plasma spraying on a controlled-temperature substrate also has been shown to improve durability by reducing harmful residual stresses. The most promising of the strain tolerant ceramic coatings have survived up to 6000 cycles of engine endurance testing with no coating or vane platform damage. In side-by-side engine tests, thermal barrier coatings have shown that they greatly reduce platform distress compared to conventionally coated vanes in addition to permitting reductions in cooling air and attendant increases in engine efficiency.


Coatings ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 255 ◽  
Author(s):  
James Smialek ◽  
Robert Miller

Thermal barrier coatings are widely used in all turbine engines, typically using a 7 wt.% Y2O3–ZrO2 formulation. Extensive research and development over many decades have refined the processing and structure of these coatings for increased durability and reliability. New compositions demonstrate some unique advantages and are gaining in application. However, the “7YSZ” (7 wt.% yttria stabilized zirconia) formulation predominates and is still in widespread use. This special composition has been universally found to produce nanoscale precipitates of metastable t’ tetragonal phase, giving rise to a unique toughening mechanism via ferro-elastic switching under stress. This note recalls the original study that identified superior properties of 6–8 wt.% yttria stabilized zirconia (YSZ) plasma sprayed thermal barrier coatings, published in 1978. The impact of this discovery, arguably, continues in some form to this day. At one point, 7YSZ thermal barrier coatings were used in every new aircraft and ground power turbine engine produced worldwide. 7YSZ is a tribute to its inventor, Dr. Stephan Stecura, NASA retiree.


Author(s):  
Muthuvel Murugan ◽  
Anindya Ghoshal ◽  
Michael Walock ◽  
Andy Nieto ◽  
Luis Bravo ◽  
...  

Gas turbine engines for military/commercial fixed-wing and rotary wing aircraft use thermal barrier coatings in the high-temperature sections of the engine for improved efficiency and power. The desire to further make improvements in gas turbine engine efficiency and high power-density is driving the research and development of thermal barrier coatings with the goal of improving their tolerance to fine foreign particulates that may be contained in the intake air. Both commercial and military aircraft engines often are required to operate over sandy regions such as in the middle-east nations, as well as over volcanic zones. For rotorcraft gas turbine engines, the sand ingestion is adverse during take-off, hovering near ground, and landing conditions. Although most of the rotorcraft gas turbine engines are fitted with inlet particle separators, they are not 100% efficient in filtering fine sand particles of size 75 microns or below. The presence of these fine solid particles in the working fluid medium has an adverse effect on the durability of turbine blade thermal barrier coatings and overall performance of the engine. Typical turbine blade damage includes blade coating wear, sand glazing, Calcia-Magnesia-Alumina-Silicate (CMAS) attack, oxidation, and plugged cooling holes, all of which can cause rapid performance deterioration including loss of aircraft. The objective of this research is to understand the fine particle interactions with typical turbine blade ceramic coatings at the microstructure level. Finite-element based microstructure modeling and analysis has been performed to investigate particle-surface interactions, and restitution characteristics. Experimentally, a set of tailored thermal barrier coatings and surface treatments were down-selected through hot burner rig tests and then applied to first stage nozzle vanes of the gas generator turbine of a typical rotorcraft gas turbine engine. Laser Doppler velocity measurements were performed during hot burner rig testing to determine sand particle incoming velocities and their rebound characteristics upon impact on coated material targets. Further, engine sand ingestion tests were carried out to test the CMAS tolerance of the coated nozzle vanes. The findings from this on-going collaborative research to develop the next-gen sand tolerant coatings for turbine blades are presented in this paper.


1989 ◽  
Vol 111 (2) ◽  
pp. 271-278 ◽  
Author(s):  
R. L. McKnight

The programs in the structural analysis area of the HOST program emphasized the generation of computer codes for performing three-dimensional inelastic analysis with more accuracy and less manpower. This paper presents the application of that technology to Aircraft Gas Turbine Engine (AGTE) components: combustors, turbine blades, and vanes. Previous limitations will be reviewed and the breakthrough technology highlighted. The synergism and spillover of the program will be demonstrated by reviewing applications to thermal barrier coatings analysis and the SSME HPFTP turbine blade. These applications show that this technology has increased the ability of the AGTE designer to be more innovative, productive, and accurate.


Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 86
Author(s):  
Satyapal Mahade ◽  
Abhilash Venkat ◽  
Nicholas Curry ◽  
Matthias Leitner ◽  
Shrikant Joshi

Thermal barrier coatings (TBCs) prolong the durability of gas turbine engine components and enable them to operate at high temperature. Several degradation mechanisms limit the durability of TBCs during their service. Since the atmospheric plasma spray (APS) processed 7–8 wt.% yttria stabilized zirconia (YSZ) TBCs widely utilized for gas turbine applications are susceptible to erosion damage, this work aims to evaluate the influence of their porosity levels on erosion behavior. Eight different APS TBCs were produced from 3 different spray powders with porosity ranging from 14% to 24%. The as-deposited TBCs were examined by SEM analysis. A licensed software was used to quantify the different microstructural features. Mechanical properties of the as-deposited TBCs were evaluated using micro-indentation technique. The as-deposited TBCs were subjected to erosion tests at different angles of erodent impact and their erosion performance was evaluated. Based on the results, microstructure-mechanical property-erosion performance was correlated. Findings from this work provide new insights into the microstructural features desired for improved erosion performance of APS deposited YSZ TBCs.


2021 ◽  
Vol 206 ◽  
pp. 116649
Author(s):  
Xun Zhang ◽  
Alan C.F. Cocks ◽  
Yoshifumi Okajima ◽  
Kazuma Takeno ◽  
Taiji Torigoe

Sign in / Sign up

Export Citation Format

Share Document