scholarly journals Structural Analysis Applications

1989 ◽  
Vol 111 (2) ◽  
pp. 271-278 ◽  
Author(s):  
R. L. McKnight

The programs in the structural analysis area of the HOST program emphasized the generation of computer codes for performing three-dimensional inelastic analysis with more accuracy and less manpower. This paper presents the application of that technology to Aircraft Gas Turbine Engine (AGTE) components: combustors, turbine blades, and vanes. Previous limitations will be reviewed and the breakthrough technology highlighted. The synergism and spillover of the program will be demonstrated by reviewing applications to thermal barrier coatings analysis and the SSME HPFTP turbine blade. These applications show that this technology has increased the ability of the AGTE designer to be more innovative, productive, and accurate.

1994 ◽  
Vol 116 (1) ◽  
pp. 250-257 ◽  
Author(s):  
S. M. Meier ◽  
D. K. Gupta

Thermal barrier coatings (TBCs) have been used for almost three decades to extend the life of combustors and augmentors and, more recently, stationary turbine components. Plasma-sprayed yttria-stabilized zirconia TBC currently is bill-of-material on many commercial jet engine parts. A more durable electron beam-physical vapor deposited (EB-PVD) ceramic coating recently has been developed for more demanding rotating as well as stationary turbine components. This ceramic EB-PVD is bill-of-material on turbine blades and vanes in current high thrust engine models and is being considered for newer developmental engines as well. To take maximum advantage of potential TBC benefits, the thermal effect of the TBC ceramic layer must become an integral element of the hot section component design system. To do this with acceptable reliability requires a suitable analytical life prediction model calibrated to engine experience. The latest efforts in thermal barrier coatings are directed toward correlating such models to measured engine performance.


Author(s):  
Susan Manning Meier ◽  
Dinesh K. Gupta

Thermal barrier coatings (TBCs) have been used for almost three decades to extend the life of combustors and augmentors and, more recently, stationary turbine components. Plasma sprayed yttria stabilized zirconia TBC currently is bill-of-material on many commercial jet engine parts. A more durable electron beam-physical vapor deposited (EB-PVD) ceramic coating recently has been developed for more demanding rotating as well as stationary turbine components. This ceramic EB-PVD is bill-of-material on turbine blades and vanes in current high thrust engine models and is being considered for newer developmental engines as well. To take maximum advantage of potential TBC benefits, the thermal effect of the TBC ceramic layer must become an integral element of the hot section component design system. To do this with acceptable reliability requires a suitable analytical life prediction model calibrated to engine experience. The latest efforts in thermal barrier coatings are directed toward correlating such models to measured engine performance.


Author(s):  
Stephanie A. Wimmer ◽  
Virginia G. DeGiorgi ◽  
Edward P. Gorzkowski ◽  
John Drazin

Thermal protection of components such as turbine blades is often done with thermal barrier coatings which are typically ceramic materials. Methods to manufacture ceramic coatings are being developed to create microstructures that optimize thermal protection without degrading mechanical properties of the coating. The coating requires sufficient mechanical properties to remain in place during loads associated with the operation of the component. The work presented in this paper is part of a broader effort that focuses on novel processing techniques. A fabrication method of interest is the inclusion of spherical micron-sized pores to scatter photons at high temperatures along with nano-sized grains to scatter phonons. Pores are sized and distributed so that mechanical strength is maintained. In the current work, yttria-stabilized zirconia (YSZ) is modeled. Three-dimensional microstructures representing YSZ are computationally generated. The defect sizes and orientations are generated to match an experimentally observed distribution. The defects are either randomly or regularly placed in the microstructural models. Stress-displacement analysis is used to determine effective bulk material properties. Comparisons are made to prior two-dimensional work and to experimental measurements available in the literature as appropriate. The influences that defect distributions and three dimensional effects have on the effective bulk material properties are quantified. This work is a preliminary step toward understanding the impacts that micron sized pores, voids and cracks have on thermal and mechanical characteristics. The goal is to facilitate optimizing the microstructure for thermal protection and strength retention.


Author(s):  
Muthuvel Murugan ◽  
Anindya Ghoshal ◽  
Michael Walock ◽  
Andy Nieto ◽  
Luis Bravo ◽  
...  

Gas turbine engines for military/commercial fixed-wing and rotary wing aircraft use thermal barrier coatings in the high-temperature sections of the engine for improved efficiency and power. The desire to further make improvements in gas turbine engine efficiency and high power-density is driving the research and development of thermal barrier coatings with the goal of improving their tolerance to fine foreign particulates that may be contained in the intake air. Both commercial and military aircraft engines often are required to operate over sandy regions such as in the middle-east nations, as well as over volcanic zones. For rotorcraft gas turbine engines, the sand ingestion is adverse during take-off, hovering near ground, and landing conditions. Although most of the rotorcraft gas turbine engines are fitted with inlet particle separators, they are not 100% efficient in filtering fine sand particles of size 75 microns or below. The presence of these fine solid particles in the working fluid medium has an adverse effect on the durability of turbine blade thermal barrier coatings and overall performance of the engine. Typical turbine blade damage includes blade coating wear, sand glazing, Calcia-Magnesia-Alumina-Silicate (CMAS) attack, oxidation, and plugged cooling holes, all of which can cause rapid performance deterioration including loss of aircraft. The objective of this research is to understand the fine particle interactions with typical turbine blade ceramic coatings at the microstructure level. Finite-element based microstructure modeling and analysis has been performed to investigate particle-surface interactions, and restitution characteristics. Experimentally, a set of tailored thermal barrier coatings and surface treatments were down-selected through hot burner rig tests and then applied to first stage nozzle vanes of the gas generator turbine of a typical rotorcraft gas turbine engine. Laser Doppler velocity measurements were performed during hot burner rig testing to determine sand particle incoming velocities and their rebound characteristics upon impact on coated material targets. Further, engine sand ingestion tests were carried out to test the CMAS tolerance of the coated nozzle vanes. The findings from this on-going collaborative research to develop the next-gen sand tolerant coatings for turbine blades are presented in this paper.


Author(s):  
D. S. Duvall ◽  
D. L. Ruckle

The durability of plasma sprayed ceramic thermal barrier coatings subjected to cyclic thermal environments has been improved substantially by improving the strain tolerance of the ceramic structure and also by controlling the substrate temperature during the application of the coating. Improved strain tolerance was achieved by using ceramic structures with increased porosity, microcracking or segmentation. Plasma spraying on a controlled-temperature substrate also has been shown to improve durability by reducing harmful residual stresses. The most promising of the strain tolerant ceramic coatings have survived up to 6000 cycles of engine endurance testing with no coating or vane platform damage. In side-by-side engine tests, thermal barrier coatings have shown that they greatly reduce platform distress compared to conventionally coated vanes in addition to permitting reductions in cooling air and attendant increases in engine efficiency.


2009 ◽  
Vol 13 (1) ◽  
pp. 147-164 ◽  
Author(s):  
Ion Ion ◽  
Anibal Portinha ◽  
Jorge Martins ◽  
Vasco Teixeira ◽  
Joaquim Carneiro

Zirconia stabilized with 8 wt.% Y2O3 is the most common material to be applied in thermal barrier coatings owing to its excellent properties: low thermal conductivity, high toughness and thermal expansion coefficient as ceramic material. Calculation has been made to evaluate the gains of thermal barrier coatings applied on gas turbine blades. The study considers a top ceramic coating Zirconia stabilized with 8 wt.% Y2O3 on a NiCoCrAlY bond coat and Inconel 738LC as substrate. For different thickness and different cooling air flow rates, a thermodynamic analysis has been performed and pollutants emissions (CO, NOx) have been estimated to analyze the effect of rising the gas inlet temperature. The effect of thickness and thermal conductivity of top coating and the mass flow rate of cooling air have been analyzed. The model for heat transfer analysis gives the temperature reduction through the wall blade for the considered conditions and the results presented in this contribution are restricted to a two considered limits: (1) maximum allowable temperature for top layer (1200?C) and (2) for blade material (1000?C). The model can be used to analyze other materials that support higher temperatures helping in the development of new materials for thermal barrier coatings.


2021 ◽  
Vol 3 (1) ◽  
pp. 63-67
Author(s):  
Esmaeil Poursaeidi ◽  
◽  
Farzam Montakhabi ◽  
Javad Rahimi ◽  
◽  
...  

The constant need to use gas turbines has led to the need to increase turbines' inlet temperature. When the temperature reaches a level higher than the material's tolerance, phenomena such as creep, changes in mechanical properties, oxidation, and corrosion occur at high speeds, which affects the life of the metal material. Nowadays, operation at high temperatures is made possible by proceedings such as cooling and thermal insulation by thermal barrier coatings (TBCs). The method of applying thermal barrier coatings on the turbine blade creates residual stresses. In this study, residual stresses in thermal barrier coatings applied by APS and HVOF methods are compared by Tsui–Clyne analytical model and XRD test. The analytical model results are in good agreement with the experimental results (between 2 and 8% error), and the HVOF spray method creates less residual stress than APS. In the end, an optimal thickness for the coating is calculated to minimize residual stress at the interface between the bond coat and top coat layers.


Sign in / Sign up

Export Citation Format

Share Document