Fault Diagnosis in Gas Turbines Using a Model-Based Technique

Author(s):  
Graeme L. Merrington

Reliable methods for diagnosing faults and detecting degraded performance in gas turbine engines are continually being sought. In this paper, a model-based technique is applied to the problem of detecting degraded performance in a military turbofan engine from take-off acceleration type transients. In the past, difficulty has been experienced in isolating effects of some of the physical processes involved. One such effect is the influence of the bulk metal temperature on the measured engine parameters during large power excursions. It will be shown that the model-based technique provides a simple and convenient way of separating this effect from the faster dynamic components. The important conclusion from this work is that good fault coverage can be gleaned from the resultant pseudo steady-state gain estimates derived in this way.

1994 ◽  
Vol 116 (2) ◽  
pp. 374-380 ◽  
Author(s):  
G. L. Merrington

Reliable methods for diagnosing faults and detecting degraded performance in gas turbine engines are continually being sought. In this paper, a model-based technique is applied to the problem of detecting degraded performance in a military turbofan engine from take-off acceleration-type transients. In the past, difficulty has been experienced in isolating the effects of some of the physical processes involved. One such effect is the influence of the bulk metal temperature on the measured engine parameters during large power excursions. It will be shown that the model-based technique provides a simple and convenient way of separating this effect from the faster dynamic components. The important conclusion from this work is that good fault coverage can be gleaned from the resultant pseudo-steady-state gain estimates derived in this way.


Author(s):  
Mustapha Chaker ◽  
Cyrus B. Meher-Homji ◽  
Thomas Mee

The inlet fogging of gas turbine engines for power augmentation has seen increasing application over the past decade yet not a single technical paper treating the physics and engineering of the fogging process, droplet size measurement, droplet kinetics, or the duct behavior of droplets, from a gas turbine perspective, is available. This paper provides the results of extensive experimental and theoretical studies conducted over several years, coupled with practical aspects learned in the implementation of nearly 500 inlet fogging systems on gas turbines ranging in power from 5 to 250 MW. Part B of the paper treats the practical aspects of fog nozzle droplet sizing, measurement and testing presenting the information from a gas turbine fogging perspective. This paper describes the different measurement techniques available, covers design aspects of nozzles, provides experimental data on different nozzles and provides recommendations for a standardized nozzle testing method for gas turbine inlet air fogging.


Author(s):  
Mustapha Chaker ◽  
Cyrus B. Meher-Homji ◽  
Thomas Mee

The inlet fogging of gas turbine engines for power augmentation has seen increasing application over the past decade yet not a single technical paper treating the physics and engineering of the fogging process, droplet size measurement, droplet kinetics, or the duct behavior of droplets, from a gas turbine perspective, is available. This paper along with Parts A and B provides the results of extensive experimental and theoretical studies conducted over several years coupled with practical aspects learned in the implementation of nearly 500 inlet fogging systems on gas turbines ranging in power from 5 to 250 MW. In part C of this paper, the complex behavior of fog droplets in the inlet duct is addressed and experimental results from several wind tunnel studies are covered.


2004 ◽  
Vol 126 (3) ◽  
pp. 559-570 ◽  
Author(s):  
Mustapha Chaker ◽  
Cyrus B. Meher-Homji ◽  
Thomas Mee

The inlet fogging of gas turbine engines for power augmentation has seen increasing application over the past decade yet not a single technical paper treating the physics and engineering of the fogging process, droplet size measurement, droplet kinetics, or the duct behavior of droplets, from a gas turbine perspective, is available. This paper provides the results of extensive experimental and theoretical studies conducted over several years, coupled with practical aspects learned in the implementation of nearly 500 inlet fogging systems on gas turbines ranging in power from 5 to 250 MW. Part II of the paper treats the practical aspects of fog nozzle droplet sizing, measurement and testing presenting the information from a gas turbine fogging perspective. This paper describes the different measurement techniques available, covers design aspects of nozzles, provides experimental data on different nozzles, and provides recommendations for a standardized nozzle testing method for gas turbine inlet air fogging.


Author(s):  
Mustapha Chaker ◽  
Cyrus B. Meher-Homji ◽  
Thomas Mee

The inlet fogging of gas turbine engines for power augmentation has seen increasing application over the past decade yet not a single technical paper treating the physics and engineering of the fogging process, droplet size measurement, droplet kinetics, or the duct behavior of droplets, from a gas turbine perspective, is available. This paper provides the results of extensive experimental and theoretical studies conducted over several years coupled with practical aspects learned in the implementation of nearly 500 inlet fogging systems on gas turbines ranging in power from 5 to 250 MW. Part A of the paper covers the underlying theory of droplet thermodynamics and heat transfer, and provides several practical pointers relating to the implementation and application of inlet fogging to gas turbine engines.


Author(s):  
K. M. Thomas ◽  
J. J. Piendel

In the past ten years there has been a dramatic increase in turbine inlet temperature in aircraft gas turbine engines. This increase has been made possible by the application of extensive air cooling to turbine parts. The attendent increase in turbine design complexity without an increase in engine design or development time has been made possible by the development of modern computers and computer programs. A computerized turbine automated design system (TADSYS) was developed at Pratt and Whitney Aircraft, which makes extensive use of computer graphics, to meet the needs of modern turbine design.


2004 ◽  
Vol 126 (3) ◽  
pp. 571-580 ◽  
Author(s):  
Mustapha Chaker ◽  
Cyrus B. Meher-Homji ◽  
Thomas Mee

The inlet fogging of gas turbine engines for power augmentation has seen increasing application over the past decade yet not a single technical paper treating the physics and engineering of the fogging process, droplet size measurement, droplet kinetics, or the duct behavior of droplets, from a gas turbine perspective, is available. This paper along with Parts I and II provides the results of extensive experimental and theoretical studies conducted over several years coupled with practical aspects learned in the implementation of nearly 500 inlet fogging systems on gas turbines ranging in power from 5 to 250 MW. In Part III of this paper, the complex behavior of fog droplets in the inlet duct is addressed and experimental results from several wind tunnel studies are covered.


2004 ◽  
Vol 126 (3) ◽  
pp. 545-558 ◽  
Author(s):  
Mustapha Chaker ◽  
Cyrus B. Meher-Homji ◽  
Thomas Mee

The inlet fogging of gas turbine engines for power augmentation has seen increasing application over the past decade yet not a single technical paper treating the physics and engineering of the fogging process, droplet size measurement, droplet kinetics, or the duct behavior of droplets, from a gas turbine perspective, is available. This paper provides the results of extensive experimental and theoretical studies conducted over several years coupled with practical aspects learned in the implementation of nearly 500 inlet fogging systems on gas turbines ranging in power from 5 to 250 MW. Part I of the paper covers the underlying theory of droplet thermodynamics and heat transfer, and provides several practical pointers relating to the implementation and application of inlet fogging to gas turbine engines.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4214
Author(s):  
Kranthi Kumar Maniam ◽  
Shiladitya Paul

The increased demand for high performance gas turbine engines has resulted in a continuous search for new base materials and coatings. With the significant developments in nickel-based superalloys, the quest for developments related to thermal barrier coating (TBC) systems is increasing rapidly and is considered a key area of research. Of key importance are the processing routes that can provide the required coating properties when applied on engine components with complex shapes, such as turbine vanes, blades, etc. Despite significant research and development in the coating systems, the scope of electrodeposition as a potential alternative to the conventional methods of producing bond coats has only been realised to a limited extent. Additionally, their effectiveness in prolonging the alloys’ lifetime is not well understood. This review summarises the work on electrodeposition as a coating development method for application in high temperature alloys for gas turbine engines and discusses the progress in the coatings that combine electrodeposition and other processes to achieve desired bond coats. The overall aim of this review is to emphasise the role of electrodeposition as a potential cost-effective alternative to produce bond coats. Besides, the developments in the electrodeposition of aluminium from ionic liquids for potential applications in gas turbines and the nuclear sector, as well as cost considerations and future challenges, are reviewed with the crucial raw materials’ current and future savings scenarios in mind.


Author(s):  
P. A. Phillips ◽  
Peter Spear

After briefly summarizing worldwide automotive gas turbine activity, the paper analyses the power plant requirements of a wide range of vehicle applications in order to formulate the design criteria for acceptable vehicle gas turbines. Ample data are available on the thermodynamic merits of various gas turbine cycles; however, the low cost of its piston engine competitor tends to eliminate all but the simplest cycles from vehicle gas turbine considerations. In order to improve the part load fuel economy, some complexity is inevitable, but this is limited to the addition of a glass ceramic regenerator in the 150 b.h.p. engine which is described in some detail. The alternative further complications necessary to achieve satisfactory vehicle response at various power/weight ratios are examined. Further improvement in engine performance will come by increasing the maximum cycle temperature. This can be achieved at lower cost by the extension of the use of ceramics. The paper is intended to stimulate the design application of the gas turbine engine.


Sign in / Sign up

Export Citation Format

Share Document