The Effect of Freestream Turbulence on Film Cooling Adiabatic Effectiveness

Author(s):  
James E. Mayhew ◽  
James W. Baughn ◽  
Aaron R. Byerley

The film-cooling performance of a flat plate in the presence of low and high freestream turbulence is investigated using liquid crystal thermography. High-resolution distributions of the adiabatic effectiveness are determined over the film-cooled surface of the flat plate using the hue method and image processing. Three blowing rates are investigated for a model with three straight holes spaced three diameters apart, with density ratio near unity. High freestream turbulence is shown to increase the area-averaged effectiveness at high blowing rates, but decrease it at low blowing rates. At low blowing ratio, freestream turbulence clearly reduces the coverage area of the cooling air due to increased mixing with the main flow. However, at high blowing ratio, when much of the jet has lifted off in the low turbulence case, high freestream turbulence turns its increased mixing into an asset, entraining some of the coolant that penetrates into the main flow and mixing it with the air near the surface.

Author(s):  
James E. Mayhew ◽  
James W. Baughn ◽  
Aaron R. Byerley

The film-cooling performance of a flat plate in the presence of low and high freestream turbulence is investigated using thermochromic liquid crystal thermography. Distributions of the convective heat transfer coefficient and adiabatic effectiveness are determined over the film-cooled surface of the flat plate. Three blowing rates are investigated for a model with one hole oriented at a compound angle of 45° and with an injection angle of 30° from the flat plate surface. An increase in heat transfer coefficient due to mass injection is clearly observed in the images and is quantitatively determined for both the low and high freestream turbulence cases. The increase in heat transfer coefficient is greater than in previously published research, possibly due to the use of different, more representative thermal boundary conditions upstream of the injection location. At low blowing ratio, freestream turbulence is shown to reduce the adiabatic effectiveness due to increased mixing between the cooling air and the main flow. However, at high blowing ratio, when much of the jet has lifted off in the low turbulence case, high freestream turbulence turns its increased mixing into an asset, entraining some of the coolant that penetrates into the main flow and mixing it with the air near the surface. This paper also contributes high-resolution contour plots that show the wider spreading of cooling air over the film-cooled surface as a result of high turbulence, and the asymmetric regions of high heat transfer.


Author(s):  
Lesley M. Wright ◽  
Stephen T. McClain ◽  
Michael D. Clemenson

Detailed film cooling effectiveness distributions are obtained on a flat plate using the pressure sensitive paint (PSP) technique. The applicability of the PSP technique is expanded to include a coolant-to-mainstream density ratio of 1.4. The effect of density ratio on the film cooling effectiveness is coupled with varying blowing ratio (M = 0.25–2.0), freestream turbulence intensity (Tu = 1%–12.5%), and film hole geometry. The effectiveness distributions are obtained on three separate flat plates containing either simple angle, cylindrical holes, simple angle, fanshaped holes (α = 10°), or simple angle, laidback, fanshaped holes (α = 10°, γ = 10°). In all three cases, the film cooling holes are angled at θ = 35° from the mainstream flow. Using the PSP technique, the combined effects of blowing ratio, turbulence intensity, and density ratio are captured for each film cooling geometry. The detailed film cooling effectiveness distributions, for cylindrical holes, clearly show the effectiveness at the lowest blowing ratio is enhanced at the lower density ratio (DR = 1). However, as the blowing ratio increases, a transition occurs, leading to increased effectiveness with the elevated density ratio (DR = 1.4). In addition, the PSP technique captures an upstream shift of the coolant jet reattachment point as the density ratio increases or the turbulence intensity increases (at moderate blowing ratios for cylindrical holes). With the decreased momentum of the shaped film cooling holes, the greatest film cooling effectiveness is obtained at the lower density ratio (DR = 1.0) over the entire range of blowing ratios considered. In all cases, as the freestream turbulence intensity increases, the film effectiveness decreases; this effect is reduced as the blowing ratio increases for all three film hole configurations.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Lesley M. Wright ◽  
Stephen T. McClain ◽  
Michael D. Clemenson

Detailed film-cooling effectiveness distributions are obtained on a flat plate using the pressure sensitive paint (PSP) technique. The applicability of the PSP technique is expanded to include a coolant-to-mainstream density ratio of 1.4. The effect of density ratio on the film-cooling effectiveness is coupled with varying blowing ratio (M=0.25–2.0), freestream turbulence intensity (Tu=1–12.5%), and film hole geometry. The effectiveness distributions are obtained on three separate flat plates containing either simple angle, cylindrical holes, simple angle, fanshaped holes (α=10 deg), or simple angle, laidback, fanshaped holes (α=10 deg and γ=10 deg). In all three cases, the film-cooling holes are angled at θ=35 deg from the mainstream flow. Using the PSP technique, the combined effects of blowing ratio, turbulence intensity, and density ratio are captured for each film-cooling geometry. The detailed film-cooling effectiveness distributions, for cylindrical holes, clearly show that the effectiveness at the lowest blowing ratio is enhanced at the lower density ratio (DR=1). However, as the blowing ratio increases, a transition occurs, leading to increased effectiveness with the elevated density ratio (DR=1.4). In addition, the PSP technique captures an upstream shift of the coolant jet reattachment point as the density ratio increases or the turbulence intensity increases (at moderate blowing ratios for cylindrical holes). With the decreased momentum of the shaped film-cooling holes, the greatest film-cooling effectiveness is obtained at the lower density ratio (DR=1.0) over the entire range of blowing ratios considered. In all cases, as the freestream turbulence intensity increases, the film effectiveness decreases; this effect is reduced as the blowing ratio increases for all three film hole configurations.


Author(s):  
Todd A. Oliver ◽  
Joshua B. Anderson ◽  
David G. Bogard ◽  
Robert D. Moser ◽  
Gregory Laskowski

Results of a recent joint experimental and computational investigation of the flow through a plenum-fed 7-7-7 shaped film cooling hole are presented. In particular, we compare the measured adiabatic effectiveness and mean temperature against implicit large eddy simulation (iLES) for blowing ratio approximately 2, density ratio 1.6, and Reynolds number 6000. The results overall show reasonable agreement between the iLES and the experimental results for the adiabatic effectiveness and gross features of the mean temperature field. Notable discrepancies include the centerline adiabatic effectiveness near the hole, where the iLES under-predicts the measurements by Δη ≈ 0.05, and the near-wall temperature, where the simulation results show features not present in the measurements. After showing this comparison, the iLES results are used to examine features that were not measured in the experiments, including the in-hole flow and the dominant fluxes in the mean internal energy equation downstream of the hole. Key findings include that the flow near the entrance to the hole is highly turbulent and that there is a large region of backflow near the exit of the hole. Further, the well-known counter-rotating vortex pair downstream of the hole is observed. Finally, the typical gradient diffusion hypothesis for the Reynolds heat flux is evaluated and found to be incorrect.


Author(s):  
Lingyu Zeng ◽  
Xueying Li ◽  
Jing Ren ◽  
Hongde Jiang

Most experiments of blade film cooling are conducted with density ratio lower than that of turbine conditions. In order to accurately model the performance of film cooling under a high density ratio, choosing an appropriate coolant to mainstream scaling parameter is necessary. The effect of density ratio on film cooling effectiveness on the surface of a gas turbine twisted blade is investigated from a numerical point of view. One row of film holes are arranged in the pressure side and two rows in the suction side. All the film holes are cylindrical holes with a pitch to diameter ratio P/d = 8.4. The inclined angle is 30°on the pressure side and 34° on the suction side. The steady solutions are obtained by solving Reynolds-Averaged-Navier-Stokes equations with a finite volume method. The SST turbulence model coupled with γ-θ transition model is applied for the present simulations. A film cooling experiment of a turbine vane was done to validate the turbulence model. Four different density ratios (DR) from 0.97 to 2.5 are studied. To independently vary the blowing ratio (M), momentum flux ratio (I) and velocity ratio (VR) of the coolant to the mainstream, seven conditions (M varying from 0.25 to 1.6 on the pressure side and from 0.25 to 1.4 on the suction side) are simulated for each density ratio. The results indicate that the adiabatic effectiveness increases with the increase of density ratio for a certain blowing ratio or a certain momentum flux ratio. Both on the pressure side and suction side, none of the three parameters listed above can serve as a scaling parameter independent of density ratio in the full range. The velocity ratio provides a relative better collapse of the adiabatic effectiveness than M and I for larger VRs. A new parameter describing the performance of film cooling is introduced. The new parameter is found to be scaled with VR for nearly the whole range.


Author(s):  
Phillip M. Ligrani ◽  
Anthony E. Ramsey

Adiabatic effectiveness and iso-energetic heat transfer coefficients are presented from measurements downstream of film-cooling holes inclined at 30 degrees with respect to the test surface in spanwise/normal planes. With this configuration, holes are spaced 3d apart in the spanwise direction and 4d in the streamwise direction in two staggered rows. Results are presented for an injectant to freestream density ratio near 1.0, and injection blowing ratios from 0.5 to 1.5. Spanwise-averaged adiabatic effectiveness values downstream of the spanwise/normal plane holes are significantly higher than values measured downstream of simple angle holes for x/d<25–70 (depending on blowing ratio) when compared for the same normalized streamwise location, blowing ratio, and spanwise and streamwise hole spacings. Differences are principally due to different coalescence of injectant accumulations from the two different rows of holes, as well as significantly different lift-off dependence on momentum flux ratio. Spanwise-averaged iso-energetic Stanton number ratios are somewhat higher than ones measured downstream of other simple and compound angle configurations studied. Values range between 1.0 and 1.41, increase with blowing ratio at each streamwise station, and show little variation with streamwise location for each value of blowing ratio tested.


Author(s):  
Tommaso Bacci ◽  
Alessio Picchi ◽  
Bruno Facchini

Shaped holes are considered as an effective solution to enhance gas turbine film-cooling performance, as they allow to increase the coolant mass-flux, while limiting the detrimental lift-off phenomena. A great amount of work has been carried out in past years on basic flat plate configurations while a reduced number of experimental works deals with a quantitative assessment of the influence of curvature and vane pressure gradient. In the present work PSP (Pressure Sensitive Paint) technique is used to detail the adiabatic effectiveness generated by axial shaped holes with high value of Area Ratio close to 7, in three different configurations with the same 1:1 scale: first of all, a flat plate configuration is examined; after that, the film-cooled pressure and suction sides of a turbine vane model are investigated. Tests were performed varying the blowing ratio and imposing a density ratio of 2.5 . The experimental results are finally compared to the predictions of two different correlations, developed for flat plate configurations.


Author(s):  
Sai Shrinivas Sreedharan ◽  
Danesh K. Tafti

Computational studies are carried out using Large Eddy Simulations (LES) to investigate the effect of coolant to mainstream blowing ratio in a leading edge region of a film cooled vane. The three row leading edge vane geometry is modeled as a symmetric semi-cylinder with a flat afterbody. One row of coolant holes is located along the stagnation line and the other two rows of coolant holes are located at ±21.3° from the stagnation line. The coolant is injected at 45° to the vane surface with 90° compound angle injection. The coolant to mainstream density ratio is set to unity and the freestream Reynolds number based on leading edge diameter is 32000. Blowing ratios (B.R.) of 0.5, 1.0, 1.5, and 2.0 are investigated. It is found that the stagnation cooling jets penetrate much further into the mainstream, both in the normal and lateral directions, than the off-stagnation jets for all blowing ratios. Jet dilution is characterized by turbulent diffusion and entrainment. The strength of both mechanisms increases with blowing ratio. The adiabatic effectiveness in the stagnation region initially increases with blowing ratio but then generally decreases as the blowing ratio increases further. Immediately downstream of off-stagnation injection, the adiabatic effectiveness is highest at B.R. = 0.5. However, further downstream the larger mass of coolant injected at higher blowing ratios, in spite of the larger jet penetration and dilution, increases the effectiveness with blowing ratio.


Author(s):  
Robert P. Schroeder ◽  
Karen A. Thole

Shaped film cooling holes have become a standard geometry for protecting gas turbine components. Few studies, however, have reported flowfield measurements for moderately-expanded shaped holes and even fewer have reported on the effects of high freestream turbulence intensity relevant to gas turbine airfoils. This study presents detailed flowfield and adiabatic effectiveness measurements for a shaped hole at freestream turbulence intensities of 0.5% and 13%. Test conditions included blowing ratios of 1.5 and 3 at a density ratio of 1.5. Measured flowfields revealed a counter-rotating vortex pair and high jet penetration into the mainstream at the blowing ratio of 3. Elevated freestream turbulence had a minimal effect on mean velocities and rather acted by increasing turbulence intensity around the coolant jet, resulting in increased lateral spreading of coolant.


Author(s):  
Zachary T. Stratton ◽  
Tom I-P. Shih ◽  
Gregory M. Laskowski ◽  
Brian Barr ◽  
Robert Briggs

CFD simulations were performed to study the film cooling of a flat plate from one row of compound-angles holes fed by an internal-cooling passage that is perpendicular to the hot-gas flow. Parameters examined include direction of flow in the internal cooling passage and blowing ratios of 0.5, 1.0, and 1.5 with the coolant-to-hot-gas density ratio kept at 1.5. This CFD study is based on steady RANS with the shear-stress transport (SST) and realizable k-ε turbulence models. To understand the effects of unsteadiness in the flow, one case was studied by using large-eddy simulation (LES). Results obtained showed an unsteady vortical structure forms inside the hole, causing a side-to-side shedding of the coolant jet. Values of adiabatic effectiveness predicted by CFD simulations were compared with the experimentally measured values. Steady RANS was found to be inconsistent in its ability to predict adiabatic effectiveness with relative error ranging for 10% to over 100%. LES was able to predict adiabatic effectiveness with reasonable accuracy.


Sign in / Sign up

Export Citation Format

Share Document