Measurement and Computation of Heat Transfer in High Pressure Compressor Drum Geometries With Axial Throughflow

1995 ◽  
Author(s):  
Christopher A. Long ◽  
Alan P. Morse ◽  
Paul G. Tucker

This paper makes comparisons between CFD computations and experimental measurements of heat transfer for the axial throughflow of cooling air in a high-pressure compressor spool rig and a plane cavity rig. The heat transfer measurements are produced using fluxmeters and by the conduction solution method from surface temperature measurements. Numerical predictions are made by solving the Navier-Stokes equations in a full three-dimensional, time-dependent form using the finite-volume method. Convergence is accelerated using a multigrid algorithm and turbulence modelled using a simple mixing length formulation. Notwithstanding systematic differences between the measurements and the computations, the level of agreement can be regarded as promising in view of the acknowledged uncertainties in the experimental data, the limitations of the turbulence model and, perhaps more importantly, the modest grid densities used for the computations.


1997 ◽  
Vol 119 (1) ◽  
pp. 51-60 ◽  
Author(s):  
C. A. Long ◽  
A. P. Morse ◽  
P. G. Tucker

This paper makes comparisons between CFD computations and experimental measurements of heat transfer for the axial throughflow of cooling air in a high-pressure compressor spool rig and a plane cavity rig. The heat transfer measurements are produced using fluxmeters and by the conduction solution method from surface temperature measurements. Numerical predictions are made by solving the Navier–Stokes equations in a full three-dimensional, time-dependent form using the finite-volume method. Convergence is accelerated using a multigrid algorithm and turbulence modeled using a simple mixing length formulation. Notwithstanding systematic differences between the measurements and the computations, the level of agreement can be regarded as promising in view of the acknowledged uncertainties in the experimental data, the limitations of the turbulence model and, perhaps more importantly, the modest grid densities used for the computations.



1998 ◽  
Vol 120 (2) ◽  
pp. 215-223 ◽  
Author(s):  
C. R. LeJambre ◽  
R. M. Zacharias ◽  
B. P. Biederman ◽  
A. J. Gleixner ◽  
C. J. Yetka

Two versions of a three-dimensional multistage Navier–Stokes code were used to optimize the design of an eleven-stage high-pressure compressor. The first version of the code utilized a “mixing plane” approach to compute the flow through multistage machines. The effects due to tip clearances and flowpath cavities were not modeled. This code was used to minimize the regions of separation on airfoil and endwall surfaces for the compressor. The resulting compressor contained bowed stators and rotor airfoils with contoured endwalls. Experimental data acquired for the HPC showed that it achieved 2 percent higher efficiency than a baseline machine, but it had 14 percent lower stall margin. Increased stall margin of the HPC was achieved by modifying the stator airfoils without compromising the gain in efficiency as demonstrated in subsequent rig and engine tests. The modifications to the stators were defined by using the second version of the multistage Navier–Stokes code, which models the effects of tip clearance and endwall flowpath cavities, as well as the effects of adjacent airfoil rows through the use of “bodyforces” and “deterministic stresses.” The application of the Navier–Stokes code was assessed to yield up to 50 percent reduction in the compressor development time and cost.



Author(s):  
C. R. LeJambre ◽  
R. M. Zacharias ◽  
B. P. Biederman ◽  
A. J. Gleixner ◽  
C. J. Yetka

Two versions of a three dimensional multistage Navier-Stokes code were used to optimize the design of an eleven stage high pressure compressor. The first version of the code utilized a “mixing plane” approach to compute the flow through multistage machines. The effects due to tip clearances and flowpath cavities were not modeled. This code was used to minimize the regions of separation on airfoil and endwall surfaces for the compressor. The resulting compressor contained bowed stators and rotor airfoils with contoured endwalls. Experimental data acquired for the HPC showed that it achieved 2% higher efficiency than a baseline machine, but it had 14% lower stall margin. Increased stall margin of the HPC was achieved by modifying the stator airfoils without compromising the gain in efficiency as demonstrated in subsequent rig and engine tests. The modifications to the stators were defined by using the second version of the multistage Navier-Stokes code, which models the effects of tip clearance and endwall flowpath cavities, as well as the effects of adjacent airfoil rows through the use of “bodyforces” and “deterministic stresses”. The application of the Navier-Stokes code was assessed to yield up to 50% reduction in the compressor development time and cost.



Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 756
Author(s):  
Federico Lluesma-Rodríguez ◽  
Francisco Álcantara-Ávila ◽  
María Jezabel Pérez-Quiles ◽  
Sergio Hoyas

One numerical method was designed to solve the time-dependent, three-dimensional, incompressible Navier–Stokes equations in turbulent thermal channel flows. Its originality lies in the use of several well-known methods to discretize the problem and its parallel nature. Vorticy-Laplacian of velocity formulation has been used, so pressure has been removed from the system. Heat is modeled as a passive scalar. Any other quantity modeled as passive scalar can be very easily studied, including several of them at the same time. These methods have been successfully used for extensive direct numerical simulations of passive thermal flow for several boundary conditions.



Author(s):  
N. Lymberopoulos ◽  
K. Giannakoglou ◽  
I. Nikolaou ◽  
K. D. Papailiou ◽  
A. Tourlidakis ◽  
...  

Mechanical constraints dictate the existence of tip clearances in rotating cascades, resulting to a flow leakage through this clearance which considerably influences the efficiency and range of operation of the machine. Three-dimensional Navier-Stokes solvers are often used for the numerical study of compressor and turbine stages with tip-clearance. The quality of numerical predictions depends strongly on how accurately the blade tip region is modelled; in this respect the accurate modelling of tip region was one of the main goals of this work. In the present paper, a 3-D Navier-Stokes solver is suitably adapted so that the flat tip surface of a blade and its sharp edges could be accurately modelled, in order to improve the precision of the calculation in the tip region. The adapted code solves the fully elliptic, steady, Navier-Stokes equations through a space-marching algorithm and a pressure correction technique; the H-type topology is retained, even in cases with thick leading edges where a special treatment is introduced herein. The analysis is applied to two different cases, a linear cascade and a compressor rotor, and comparisons with experimental data are provided.



Author(s):  
F. J. Hong ◽  
P. Cheng ◽  
H. Ge ◽  
Teck Joo Goh

In this paper, a numerical simulation is carried to study pressure drop and heat transfer in a fractal tree-like microchannel net heat sink of 10mm×12.5mm×0.5mm in dimensions. The numerical result is obtained by solving three-dimensional Navier-Stokes equations and energy equation, taking into consideration conjugate heat transfer in the microchannel walls. A comparison of fractal tree-like microchannel net heat sink with 6 branch levels to parallel microchannels heat sink, with respect to the pressure drop, thermal resistance and temperature uniformity, was also performed under the condition of the same heat sink dimensions. The results indicates that for a mass flow rate of water less than 0.00175kg/s, the fractal tree-like microchannel is much better than parallel channel heat sink with respect to all of three aspects. Therefore, the fractal tree-like microchannels net heat sink using water as the coolant is promising to be used in the future electronic cooling industry.



Author(s):  
Jianjun Liu

This paper describes the numerical simulation of the asymmetric exhaust flows by using a 3D viscous flow solver incorporating an actuator disc blade row model. The three dimensional Reynolds-Averaged Navier-Stokes equations are solved by using the TVD Lax-Wendroff scheme. The convergence to a steady state is speeded up by using the V-cycle multigrid algorithm. Turbulence eddy viscosity is estimated by the Baldwin-Lomax model. Multiblock method is applied to cope with the complicated physical domains. Actuator disc model is used to represent a turbine blade row and to achieve the required flow turning and entropy rise across the blade row. The solution procedure and the actuator disc boundary conditions are described. The stream traces in various sections of the exhaust hood are presented to demonstrate the complicity of the flow patterns existing in the exhaust hood.



Author(s):  
Heming Yun ◽  
Lin Cheng ◽  
Liqiu Wang ◽  
Binjian Chen

In the present paper we focus our attention on the analysis of surface roughness effects. In the process of numerical simulation, a finite-volume method was used to solve the three-dimensional Navier-Stokes equations and energy equation. In turbulent region, wall-function was used to solve the temperature and velocity of coolant in the area near the wall. In all computational regions, the fluid-solid Conjugate heat transfer is used to solve the microchannel heat transfer problems. In conclusion the effect of surface roughness on heat transfer and pressure drop can not be neglected. And one should be very careful in ascribing the roughness effect to the discrepancies between experimental heat transfer and the prediction for standard macro scale channels.



Sign in / Sign up

Export Citation Format

Share Document