Common Product/Process Models for Integrating Manufacturing Simulation, Process Planning and Computer Aided Design

Author(s):  
Robert V. E. Bryant ◽  
Thomas J. Laliberty

Abstract Integrated Product Process Development tools which minimize downstream manufacturing risk at the earliest design stages and avoid costly Design-Build-Test cycles are essential to achieving product profitability and meeting market windows. This paper summarizes initial work performed towards the development of the Manufacturing Simulation Driver (MSD) system which will demonstrate the automatic generation and execution of distributed manufacturing simulations. These simulation models are produced by Computer Aided Process Planning (CAPP) software tools which reason about Computer Aided Design (CAD) product models and produce manufacturing “scripts” from a process and resource model of a manufacturing facility. This capability will enable emerging virtual enterprises conducting collaborative design and manufacturing to simulate and prove out the manufacturing cycle of a product prior to launching production ramp-up. 1

Author(s):  
Derek Yip-Hoi ◽  
Jianming Li ◽  
Liang Zhou ◽  
Wencai Wang ◽  
Madhumati Ramesh ◽  
...  

Machined powertrain components are a subset of machined parts that introduce unique and difficult problems to product design, process planning and manufacturing system design for the automotive industry. They are complex, high value-added components that must be produced at large volumes to stringent quality standards. Accordingly product development cycles are typically long. Integrated computer-aided approaches are thus desirable for reducing this time and helping manufacturing engineers design the best process and specify the optimal manufacturing system configuration. This paper presents a framework for integrating Computer-Aided Design (CAD), Computer-Aided Process Planning (CAPP) and Computer-Aided Manufacturing Systems Engineering (CAE-MS) for producing machined powertrain components. It describes the key components of this framework and in some cases details of the methods and technologies adopted for their realization. This solution is based upon a feature-centric philosophy. This stands in contrast to the product-variant approach that has been common practice in this industry.


Author(s):  
Benjamin Sands ◽  
Debra Stephens ◽  
Thomas J. Laliberty ◽  
Naresh Raja

Abstract Integrated Product Process Development is essential to the development of competitive products, with manufacturing considerations such as cost, quality and cycle times well understood early in the design cycle. In order to rapidly design and develop new products, diverse organizations, often separated by hundreds of miles, must find new ways of sharing ideas and knowledge and working together towards common goals. New tools must be inserted into the process to enable and facilitate a different way of doing business. This paper summarizes work performed as part of the DARPA sponsored Rapid Design Exploration and Optimization (RaDEO) program, specifically the development of the Manufacturing Simulation Driver (MSD) system which demonstrates the automatic generation and execution of distributed manufacturing simulations. The MSD system enables Integrated Process Teams (IPT’s) to quickly create detailed manufacturing simulations of new products. MSD driven simulations include modeling the flow of a product through a particular factory early in the design cycle to provide the insight to modify designs in order to alleviate manufacturing bottlenecks. This capability enables emerging virtual enterprises conducting collaborative design and manufacturing to simulate and prove out the manufacturing cycle of a product prior to launching production ramp-up. The Manufacturing Simulation Driver (MSD) system automatically populates simulatable manufacturing templates enabling manufacturability assessments of alternative candidate designs and processes to be conducted throughout the product development cycle. This capability provides design teams with early insight into aspects of the evolving design which compromises product manufacturability.


Author(s):  
C. C. Hayes

Abstract This paper describes CHAMP, a conceptual architecture designed to support the task of passing information from computer-aided design systems to computer-aided process planning systems.1 Current integration systems are lacking in the flexibility of both their information-exchange mechanisms and in their control structures. The result is a sacrifice in the efficiency of solutions produced. The proposed architecture is based on models of human process planning, and aims to improve the effectiveness of CAD/CAPP integration by providing more flexible communications and control structures through shared blackboards, and by providing a mechanism for reasoning about intermediate solution states. The architecture is intended to summarize the current understanding of the CAD/CAPP integration task and to elucidate areas where further research is required.


Author(s):  
Haichao Wang ◽  
Jie Zhang ◽  
Xiaolong Zhang ◽  
Changwei Ren ◽  
Xiaoxi Wang ◽  
...  

Feature recognition is an important technology of computer-aided design/computer-aided engineering/computer-aided process planning/computer-aided manufacturing integration in cast-then-machined part manufacturing. Graph-based approach is one of the most popular feature recognition methods; however, it cannot still solve concave-convex mixed interacting feature recognition problem, which is a common problem in feature recognition of cast-then-machined parts. In this study, an oriented feature extraction and recognition approach is proposed for concave-convex mixed interacting features. The method first extracts predefined features directionally according to the rules generated from attributed adjacency graphs–based feature library and peels off them from part model layer by layer. Sub-features in an interacting feature are associated via hints and organized as a feature tree. The time cost is reduced to less than [Formula: see text] by eliminating subgraph isomorphism and matching operations. Oriented feature extraction and recognition approach recognizes non-freeform-surface features directionally regardless of the part structure. Hence, its application scope can be extended to multiple kinds of non-freeform-surface parts by customizing. Based on our findings, implementations on prismatic, plate, fork, axlebox, linkage, and cast-then-machined parts prove that the proposed approach is applicable on non-freeform-surface parts and effectively recognize concave-convex mixed interacting feature in various mechanical parts.


1992 ◽  
Vol 8 (02) ◽  
pp. 77-88
Author(s):  
S. Madden ◽  
H. H. Vanderveldt ◽  
J. Jones

Computer Aided Process Planning (CAPP) integrated with Computer Aided Design (CAD) and Computer Aided Manufacturing (CAM) will form the basis of engineering/planning systems of the future. These systems will have the capability to operate in a paperless environment and provide highly optimized process operation plans. The WELDEXCELL System is a prototype of such a system for welding in shipyards. The paper discusses three significant computer technology advances which have been in into the WELDEXCELL prototype. First is a computerized system for allowing multiple knowledge sources (expert systems, humans, data systems, etc.) to work together to solve a common problem (the weld plan). This system is called a "blackboard." The second is a methodology for the blackboard to communicate to the human user. This interface includes full interactive graphics fully integrated to CAD as well as data searches and automatic completion of routine engineering tasks. The third is artificial neural networks (ANS's), which are based on biological neural networks (such as the human brain) and which can do neural reasoning tasks about difficult problems. ANS's offer the opportunity to model highly complex multivariable and nonlinear processes (for example, welding) and provide a means for an engineer to quantitatively assess the process and its operation.


2014 ◽  
Vol 619 ◽  
pp. 105-109
Author(s):  
R.K. Abdel-Magied ◽  
H.M.A. Hussein

The aim of this work is to develop an integrated system for facilitating the process of designing the drawing dies and their component. The developed system is based on the integration between Computer Aided Process Planning in Sheet Metal Drawn parts “CAPP”, and the Computer Aided Design in Deep Drawing Die components “CAD”. Both modules are coded using Visual Basic program and joined with AutoCAD. The CAPP module made to report the drawing load and to plot the shape of the drawn shell in each stage of the Axis-Symmetric Deep Drawing process. Based on the reported shell geometry, the dimensions of the die components are calculated and transferred to the CAD module. The CAD module, which is based on many data bases (standard parts, sheet metal data), plots the required deep drawing die components for each drawn stage on the AutoCAD monitor. A demonstrated example is presented to validate the developed system and to show that the system results are acceptable.


2006 ◽  
Vol 6 (3) ◽  
pp. 308-314 ◽  
Author(s):  
Duhwan Mun ◽  
Heungki Kim ◽  
Kwangsub Jang ◽  
Junmyun Cho ◽  
Junhwan Kim ◽  
...  

Reusing existing design models and utilizing an e-Catalog for components are required for faster product development. For the acceleration, an e-Catalog should provide parametric computer aided design (CAD) models, since parametric information is necessary for configuration design. There are difficulties, however, in building a parametric library of all the necessary combinations using a CAD system, because there are too many component combinations for each product. To overcome this problem, we propose a table parametric method to generate parametric CAD models automatically, and describe its details.


Sign in / Sign up

Export Citation Format

Share Document