Synthesis of Four-Bar Function Generators by an Iterative Learning Control Procedure

Author(s):  
Minh Q. Phan ◽  
Meng-Sang Chew

Abstract This paper investigates the applicability of learning control theory to mechanism synthesis via the classical four-bar function generator problem. A function to be generated by a mechanism can be looked upon as a trajectory to be tracked. The parameters that define the mechanism can be thought of as the control inputs. In this sense, the problem of synthesizing a mechanism to generate a particular output function can be treated as a “control” problem. Moreover, it is a learning control problem if the mechanism is synthesized by an iterative process. At each trial or iteration, a learning scheme modifies the mechanism dimensions based on how well it generates the desired function in the previous trial so that the synthesized mechanism approximates the desired output function more and more closely. With this thinking, concepts and tools from learning control theory can be adapted to the mechanism synthesis problem. It will be shown that mechanisms with minimum residual error or minimum structural error can be synthesized by a procedure analogous to that derived for iterative learning control. The starting angles of the input and output links are learned together with the mechanism dimensions. By the use of weighted cost functionals, iterative learning schemes that handle the tradeoff between the emphasis on a certain portion of the output trajectory (e.g., local control) and the mechanism dimensions can be derived in a straight forward manner. Numerical examples are used to illustrate the utility and flexibility of the learning formulation.

2020 ◽  
Vol 42 (12) ◽  
pp. 2166-2177
Author(s):  
Gaoyang Jiang ◽  
Zhongsheng Hou

Trajectory-based aircraft operation and control is one of the hot issues in air traffic management. However, the accurate mechanism modeling of aircraft is tough work, and the operation data have not been effectively utilized in many studies. So, in this work, we apply the model-free adaptive iterative learning control method to address the time-of-arrival control problem in trajectory-based aircraft operation. This problem is first formulated into a trajectory tracking problem with along-track wind disturbance. Through rigorous analysis, it is shown that this method, combined with point-to-point iterative learning control (ILC) strategy, can effectively deal with the arrival time control problem with multiple time constraints. Then, the terminal ILC strategy is applied, aiming to resolve the same problem with a time constraint at the end point. Compared with the PID (Proportional Integral Derivative) type ILC, the proposed method improves control performance by 11.15% in root mean square of tracking error and 9.32% in integral time absolute error. The sensitivity and flexibility of the data-driven approach is further verified through numerical simulations.


2013 ◽  
Vol 677 ◽  
pp. 296-303 ◽  
Author(s):  
Cheng Wang ◽  
Jun Yao Gao ◽  
Xing Guang Duan ◽  
Yi Liu ◽  
Xin Li ◽  
...  

Based on the quadruped robot, this paper mainly studies the two directions of the content. The first part mainly introduces the mechanical structure design and the construction of the control system of the quadruped robot, completes the prototype design of the quadruped robot based on hydraulic power system. The second part studies the CPG gait generate method of the quadruped robot based on iterative learning control algorithm. From the principle of bionics, firstly, we use the CPG principle to generate gait, and then use the iterative learning control theory to make the control more optimization.


Sign in / Sign up

Export Citation Format

Share Document