Detailed Film Cooling Measurements on a Cylindrical Leading Edge Model: Effect of Free-Stream Turbulence and Coolant Density

Author(s):  
Srinath V. Ekkad ◽  
Je-Chin Han ◽  
Hui Du

Detailed heat transfer coefficient and film effectiveness distributions are presented on a cylindrical leading edge model using a transient liquid crystal technique. Tests were done in a low speed wind tunnel on a cylindrical model in a crossflow with two rows of injection holes. Mainstream Reynolds number based on the cylinder diameter was 100,900. The two rows of injection holes were located at ±15° from stagnation. The film holes were spaced 4-hole diameters apart and were angled 30° and 90° to the surface in the spanwise and streamwise directions, respectively. Heat transfer coefficient and film effectiveness distributions are presented on only one side of the front half of the cylinder. The cylinder surface is coated with a thin layer of thermochromic liquid crystals and a transient test is run to obtain the heat transfer coefficients and film effectiveness. Air and CO2 were used as coolant to simulate coolant-to-mainstream density ratio effect. The effect of coolant blowing ratio was studied for blowing ratios of 0.4, 0.8, and 12. Results show that Nusselt numbers downstream of injection increase with an increase in blowing ratio for both coolants. Air provides highest effectiveness at blowing ratio of 0.4 and CO2 provides highest effectiveness at a blowing ratio of 0.8. Higher density coolant (CO2) provides lower Nusselt numbers at all blowing ratios compared to lower density coolant (air). An increase in free-stream turbulence has very small effect on Nusselt numbers for both coolants. However, an increase in free-stream turbulence reduces film effectiveness significantly at low blowing ratios for both coolants.

1998 ◽  
Vol 120 (4) ◽  
pp. 799-807 ◽  
Author(s):  
S. V. Ekkad ◽  
J. C. Han ◽  
H. Du

Detailed heat transfer coefficient and film effectiveness distributions are presented on a cylindrical leading edge model using a transient liquid crystal technique. Tests were done in a low-speed wind tunnel on a cylindrical model in a crossflow with two rows of injection holes. Mainstream Reynolds number based on the cylinder diameter was 100,900. The two rows of injection holes were located at ±15 deg from stagnation. The film holes were spaced four hole diameters apart and were angled 30 and 90 deg to the surface in the spanwise and streamwise directions, respectively. Heat transfer coefficient and film effectiveness distributions are presented on only one side of the front half of the cylinder. The cylinder surface is coated with a thin layer of thermochromic liquid crystals and a transient test is run to obtain the heat transfer coefficients and film effectiveness. Air and CO2 were used as coolant to simulate coolant-to-mainstream density ratio effect. The effect of coolant blowing ratio was studied for blowing ratios of 0.4, 0.8, and 1.2. Results show that Nusselt numbers downstream of injection increase with an increase in blowing ratio for both coolants. Air provides highest effectiveness at blowing ratio of 0.4 and CO2 provides highest effectiveness at a blowing ratio of 0.8. Higher density coolant (CO2) provides lower Nusselt numbers at all blowing ratios compared to lower density coolant (air). An increase in free-stream turbulence has very small effect on Nusselt numbers for both coolants. However, an increase in free-stream turbulence reduces film effectiveness significantly at low blowing ratios for both coolants.


1997 ◽  
Vol 119 (3) ◽  
pp. 594-600 ◽  
Author(s):  
S. V. Ekkad ◽  
A. B. Mehendale ◽  
J. C. Han ◽  
C. P. Lee

Experiments were performed to study the combined effect of grid turbulence and unsteady wake on film effectiveness and heat transfer coefficient of a turbine blade model. Tests were done on a five-blade linear cascade at the chord Reynolds number of 3.0 × 105 at cascade inlet. Several combinations of turbulence grids, their locations, and unsteady wake strengths were used to generate various upstream turbulence conditions. The test blade had three rows of film holes in the leading edge region and two rows each on the pressure and suction surfaces. Air and CO2 were used as injectants. Results show that Nusselt numbers for a blade with film injection are much higher than that without film holes. An increase in mainstream turbulence level causes an increase in Nusselt numbers and a decrease in film effectiveness over most of the blade surface, for both density injectants, and at all blowing ratios. A free-stream turbulence superimposed on an unsteady wake significantly affects Nusselt numbers and film effectiveness compared with only an unsteady wake condition.


2014 ◽  
Author(s):  
Frantzis Iakovidis ◽  
David S.-K. Ting

Flow over a heated flat plate (surrogate photovoltaic panel) was investigated experimentally in a closed loop wind tunnel to examine the influence of free stream turbulence intensity on the convection heat transfer coefficient. First, the near laminar (background turbulence intensity < 0.5%) free stream case was considered at velocities ranging from 4 to 10 m/s; this resulted in Reynolds numbers ranging from 1 × 105 to 2.4 × 105 based on the plate length. The turbulence free stream case was realized by installing an orificed perforated plate upstream to generate turbulence intensities of 4, 8 and 12% at the leading edge of the surrogate panel. Local heat transfer coefficient and Nusselt number were determined along the span of the plate for each case; Nusselt number was presented in terms of Reynolds number and turbulence intensity. It was revealed that by increasing the turbulence intensity from 4% to 12% the rate of heat transfer increased up to ∼40%, such considerable increase can significantly improve performance of some applications such as PV panels.


Author(s):  
Vinod U. Kakade ◽  
Steven J. Thorpe ◽  
Miklós Gerendás

The thermal management of aero gas turbine engine combustion systems commonly employs effusion-cooling in combination with various cold-side convective cooling schemes. The combustor liner incorporates many small holes which are usually set in staggered arrays and at a shallow angle to the cooled surface; relatively cold compressor delivery air is then allowed to flow through these holes to provide the full-coverage film-cooling effect. The efficient design of such systems requires robust correlations of film-cooling effectiveness and heat transfer coefficient at a range of aero-thermal conditions, and the use of appropriately validated computational models. However, the flow conditions within a combustor are characterised by particularly high turbulence levels and relatively large length scales. The experimental evidence for performance of effusion-cooling under such flow conditions is currently sparse. The work reported here is aimed at quantifying typical effusion-cooling performance at a range of combustor relevant free-stream conditions (high turbulence), and also to assess the importance of modeling the coolant to free-stream density ratio. Details of a new laboratory wind-tunnel facility for the investigation of film-cooling at high turbulence levels are reported. For a typical combustor effusion geometry that uses cylindrical holes, spatially resolved measurements of adiabatic effectiveness, heat transfer coefficient and net heat flux reduction are presented for a range of blowing ratios (0.48 to 2), free-stream turbulence conditions (4 and 22%) and density ratios (0.97 and 1.47). The measurements reveal that elevated free-stream turbulence impacts on both the adiabatic effectiveness and heat transfer coefficient, although this is dependent upon the blowing ratio being employed and particularly the extent to which the coolant jets detach from the surface. At low blowing ratios the presence of high turbulence levels causes increased lateral spreading of the coolant adjacent to the injection points, but more rapid degradation in the downstream direction. At high blowing ratios, high turbulence levels cause a modest increase in effectiveness due to turbulent transport of the detached coolant fluid. Additionally, the augmentation of heat transfer coefficient caused by the coolant injection is seen to be increased at high free-stream turbulence levels.


Author(s):  
Bo-lun Zhang ◽  
Li Zhang ◽  
Hui-ren Zhu ◽  
Jian-sheng Wei ◽  
Zhong-yi Fu

Film cooling performance of the double-wave trench was numerically studied to improve the film cooling characteristics. Double-wave trench was formed by changing the leading edge and trailing edge of transverse trench into cosine wave. The film cooling characteristics of transverse trench and double-wave trench were numerically studied using Reynolds Averaged Navier Stokes (RANS) simulations with realizable k-ε turbulence model and enhanced wall treatment. The film cooling effectiveness and heat transfer coefficient of double-wave trench at different trench width (W = 0.8D, 1.4D, 2.1D) conditions are investigated, and the distribution of temperature field and flow field were analyzed. The results show that double-wave trench effectively improves the film cooling effectiveness and the uniformity of jet at the downstream wall of the trench. The span-wise averaged film cooling effectiveness of the double-wave trench model increases 20–63% comparing with that of the transverse trench at high blowing ratio. The anti-counter-rotating vortices which can press the film on near-wall are formed at the downstream wall of the double-wave trench. With the double-wave trench width decreasing, the film cooling effectiveness gradually reduces at the hole center-line region of the downstream trench. With the increase of the blowing ratio, the span-wise averaged heat transfer coefficient increases. The span-wise averaged heat transfer coefficient of the double-wave trench with 0.8D and 2.1D trench width is higher than that of the double-wave trench with 1.4D trench width at the high blowing ratio conditions.


Author(s):  
Donald L. Schmidt ◽  
David G. Bogard

A flat plate test section was used to study how high free-stream turbulence with large turbulence length scales, representative of the turbine environment, affect the film cooling adiabatic effectiveness and heat transfer coefficient for a round hole film cooling geometry. This study also examined cooling performance with combined high free-stream turbulence and a rough surface which simulated the roughness representative of an in-service turbine. The injection was from a single row of film cooling holes with injection angle of 30°. The density ratio of the injectant to the mainstream was 2.0 for the adiabatic effectiveness tests, and 1.0 for the heat transfer coefficient tests. Streamwise and lateral distributions of adiabatic effectiveness and heat transfer coefficients were obtained at locations from 2 to 90 hole diameters downstream. At small to moderate momentum flux ratios, which would normally be considered optimum blowing conditions, high free-stream turbulence dramatically decreased adiabatic effectiveness. However, at large momentum flux ratios, conditions for which the film cooling jet would normally be detached, high free-stream turbulence caused an increase in adiabatic effectiveness. The combination of high free-stream turbulence with surface roughness resulted in an increase in adiabatic effectiveness relative to the smooth wall with high free-stream turbulence. Heat transfer rates were relatively unaffected by a film cooling injection. The key result from this study was a substantial increase in the momentum flux ratios for maximum film cooling performance which occurred for high free-stream turbulence and surface roughness conditions which are more representative of actual turbine conditions.


Author(s):  
Rui-dong Wang ◽  
Cun-liang Liu ◽  
Hai-yong Liu ◽  
Hui-ren Zhu ◽  
Qi-ling Guo ◽  
...  

Heat transfer of the counter-inclined cylindrical and laid-back holes with and without impingement on the turbine vane leading edge model are investigated in this paper. To obtain the film cooling effectiveness and heat transfer coefficient, transient temperature measurement technique on complete surface based on double thermochromic liquid crystals is used in this research. A semi-cylinder model is used to model the vane leading edge which is arranged with two rows of holes. Four test models are measured under four blowing ratios including cylindrical film holes with and without impingement tube structure, laid-back film holes with and without impingement tube structure. This is the second part of a two-part paper, the first part paper GT2018-76061 focuses on film cooling effectiveness and this study will focus on heat transfer. Contours of surface heat transfer coefficient and laterally averaged result are presented in this paper. The result shows that the heat transfer coefficient on the surface of the leading edge is enhanced with the increase of blowing ratio for same structure. The shape of the high heat transfer coefficient region gradually inclines to span-wise direction as the blowing ratio increases. Heat transfer coefficient in the region where the jet core flows through is relatively lower, while in the jet edge region the heat transfer coefficient is relatively higher. Compared with cylindrical hole, laid-back holes give higher heat transfer coefficient. Meanwhile, the introduction of impingement also makes heat transfer coefficient higher compared with cross flow air intake. It is found that the heat transfer of the combination of laid-back hole and impingement tube can be very high under large blowing ratio which should get attention in the design process.


Author(s):  
Hossein Nadali Najafabadi ◽  
Matts Karlsson ◽  
Mats Kinell ◽  
Esa Utriainen

Improving film cooling performance of turbine vanes and blades is often achieved through application of multiple arrays of cooling holes on the suction side, the showerhead region and the pressure side. This study investigates the pressure side cooling under the influence of single and multiple rows of cooling in the presence of a showerhead from a heat transfer coefficient augmentation perspective. Experiments are conducted on a prototype turbine vane working at engine representative conditions. Transient IR thermography is used to measure time-resolved surface temperature and the semi-infinite method is utilized to calculate the heat transfer coefficient on a low conductive material. Investigations are performed for cylindrical and fan-shaped holes covering blowing ratio 0.6 and 1.8 at density ratio of about unity. The freestream turbulence is approximately 5% close to the leading edge. The resulting heat transfer coefficient enhancement, the ratio of HTC with to that without film cooling, from different case scenarios have been compared to showerhead cooling only. Findings of the study highlight the importance of showerhead cooling to be used with additional row of cooling on the pressure side in order to reduce heat transfer coefficient enhancement. In addition, it is shown that extra rows of cooling will not significantly influence heat transfer augmentation, regardless of the cooling hole shape.


1987 ◽  
Vol 109 (1) ◽  
pp. 10-15 ◽  
Author(s):  
G. J. VanFossen ◽  
R. J. Simoneau

A study has been conducted at the NASA Lewis Research Center to investigate the mechanism that causes free-stream turbulence to increase heat transfer in the stagnation region of turbine vanes and blades. The work was conducted in a wind tunnel at atmospheric conditions to facilitate measurements of turbulence and heat transfer. The model size was scaled up to simulate Reynolds numbers (based on leading edge diameter) that are to be expected on a turbine blade leading edge. Reynolds numbers from 13,000 to 177,000 were run in the present tests. Spanwise averaged heat transfer measurements with high and low turbulence have been made with “rough” and smooth surface stagnation regions. Results of these measurements show that, at the Reynolds numbers tested, the boundary layer remained laminar in character even in the presence of free-stream turbulence. If roughness was added the boundary layer became transitional as evidenced by the heat transfer increase with increasing distance from the stagnation line. Hot-wire measurements near the stagnation region downstream of an array of parallel wires has shown that vorticity in the form of mean velocity gradients is amplified as flow approaches the stagnation region. Finally smoke wire flow visualization and liquid crystal surface heat transfer visualization were combined to show that, in the wake of an array of parallel wires, heat transfer was a minimum in the wire wakes where the fluctuating component of velocity (local turbulence) was the highest. Heat transfer was found to be the highest between pairs of vortices where the induced velocity was toward the cylinder surface.


2001 ◽  
Vol 7 (3) ◽  
pp. 153-164 ◽  
Author(s):  
Ping-Hei Chen ◽  
Min-Sheng Hung ◽  
Pei-Pei Ding

In order to explore the effect of blowing ratio on film cooling over a convex surface, the present study adopts the transient liquid crystal thermography for the film cooling measurement on a straight circular hole configuration. The test piece has a strength of curvature(2r/D)of 92.5, pitch to diameter ratio(P/D)of 3 and streamwise injection angle(γ)of35∘All measurements were conducted under the mainstream Reynolds number(Red)of 1700 with turbulence intensity(Tu)of 3.8%, and the density ratio between coolant and mainstream(ρc/ρm)is 0.98. In current study, the effect of blowing ratio(M)on film cooling performance is investigated by varying the range of blowing ratio from 0.5 to 2.0. Two transient tests of different injection flow temperature were conducted to obtain both detailed heat transfer coefficient and film cooling effectiveness distributions of measured region. The present measured results show that both the spanwise averaged heat transfer coefficient and film cooling effectiveness increase with decreased blowing ratio.


Sign in / Sign up

Export Citation Format

Share Document