Flowfield Measurements in the Endwall Region of a Stator Vane

Author(s):  
M. B. Kang ◽  
K. A. Thole

A first stage stator vane experiences high heat transfer rates particularly near the end wall where strong secondary flows occur. In order to improve numerical predictions of the complex endwall flow at low speed conditions, benchmark quality experimental data are required. This study documents the flowfield in the endwall region of a stator vane that has been scaled up by a factor of nine while matching an engine exit Reynolds number of Reex = 1.2·106. Laser Doppler velocimeter (LDV) measurements of all three components of the mean and fluctuating velocities are presented for several flow planes normal to the turbine vane. Measurements indicate that downstream of the minimum static pressure location on the suction surface of the vane, an attenuated suction side leg of the horseshoe vortex still exists. At this location, the peak turbulent kinetic energy coincides with the center of the passage vortex location. These flowfield measurements were also related to previously reported convective heat transfer coefficients on the endwall showing that high Stanton numbers occur where the passage vortex brings mainstream fluid towards the vane surface.

1999 ◽  
Vol 122 (3) ◽  
pp. 458-466 ◽  
Author(s):  
M. B. Kang ◽  
K. A. Thole

A first-stage stator vane experiences high heat transfer rates, particularly near the endwall, where strong secondary flows occur. In order to improve numerical predictions of the complex endwall flow at low-speed conditions, benchmark quality experimental data are required. This study documents the flowfield in the endwall region of a stator vane that has been scaled up by a factor of nine while matching an engine exit Reynolds number of Reex=1.2×106. Laser Doppler velocimeter (LDV) measurements of all three components of the mean and fluctuating velocities are presented for several flow planes normal to the turbine vane. Measurements indicate that downstream of the minimum static pressure location on the suction surface of the vane, an attenuated suction side leg of the horseshoe vortex still exists. At this location, the peak turbulent kinetic energy coincides with the center of the passage vortex location. These flowfield measurements were also related to previously reported convective heat transfer coefficients on the endwall showing that high Stanton numbers occur where the passage vortex brings mainstream fluid toward the vane surface. [S0889-504X(00)00803-5]


Author(s):  
Yousef Kanani ◽  
Sumanta Acharya ◽  
Forrest Ames

Abstract Turbine passage secondary flows are studied for a large rounded leading edge airfoil geometry considered in the experimental investigation of Varty et al. (J. Turbomach. 140(2):021010) using high resolution Large Eddy Simulation (LES). The complex nature of secondary flow formation and evolution are affected by the approach boundary layer characteristics, components of pressure gradients tangent and normal to the passage flow, surface curvature, and inflow turbulence. This paper presents a detailed description of the secondary flows and heat transfer in a linear vane cascade at exit chord Reynolds number of 5 × 105 at low and high inflow turbulence. Initial flow turning at the leading edge of the inlet boundary layer leads to a pair of counter-rotating flow circulation in each half of the cross-plane that drive the evolution of the pressure-side and suction side of the near-wall vortices such as the horseshoe and leading edge corner vortex. The passage vortex for the current large leading-edge vane is formed by the amplification of the initially formed circulation closer to the pressure side (PPC) which strengthens and merges with other vortex systems while moving toward the suction side. The predicted suction surface heat transfer shows good agreement with the measurements and properly captures the augmented heat transfer due to the formation and lateral spreading of the secondary flows towards the vane midspan downstream of the vane passage. Effects of various components of the secondary flows on the endwall and vane heat transfer are discussed in detail.


2016 ◽  
Vol 138 (4) ◽  
Author(s):  
Stephen P. Lynch ◽  
Karen A. Thole

The boundary layer on the endwall of an axial turbomachine passage is influenced by streamwise and cross-stream pressure gradients, as well as a large streamwise vortex, that develop in the passage. These influences distort the structure of the boundary layer and result in heat transfer and friction coefficients that differ significantly from simple two-dimensional boundary layers. Three-dimensional contouring of the endwall has been shown to reduce the strength of the large passage vortex and reduce endwall heat transfer, but the mechanisms of the reductions on the structure of the endwall boundary layer are not well understood. This study describes three-component measurements of mean and fluctuating velocities in the passage of a turbine blade obtained with a laser Doppler velocimeter (LDV). Friction coefficients obtained with the oil film interferometry (OFI) method were compared to measured heat transfer coefficients. In the passage, the strength of the large passage vortex was reduced with contouring. Regions where heat transfer was increased by endwall contouring corresponded to elevated turbulence levels compared to the flat endwall, but the variation in boundary layer skew across the passage was reduced with contouring.


Author(s):  
Fangpan Zhong ◽  
Chao Zhou ◽  
H. Ma ◽  
Q. Zhang

Understanding the heat transfer of winglet tips is crucial for their applications in high-pressure turbines. The current paper investigates the heat transfer performance of three different winglet-cavity tips in a transonic turbine cascade at a tip gap of 2.1% chord. A cavity tip is studied as the baseline case. The cascade operates at engine representative conditions of an exit Mach number of 1.2 and an exit Reynolds number of 1.7 × 106. Transient infrared thermography technique was used to obtain the tip distributions of heat transfer coefficient for different tips in the experiment. The CFD results were validated with the measured tip heat transfer coefficients, and then used to explain the flow physics related to heat transfer. It is found that on the pressure side winglet, the flow reattaches on the top winglet surface and results in high heat transfer coefficient. On the suction side winglet, the heat transfer coefficient is low near the blade leading edge but is higher from the midchord to the trailing edge. The suction side winglet pushes the tip leakage vortex further away from the blade suction surface and reduces the heat transfer coefficient from 85% to 96% span on the blade suction surface. However, the heat transfer coefficient is higher for the winglet tips from 96% span to the tip. This is because the tip leakage vortex attaches on the side surface of the suction side winglet and results in quite high heat transfer coefficient on the front protrusive part of the winglet. The effects of relative endwall motion between the blade tip and the casing were investigated by CFD method. The endwall motion has a significant effect on the flow physics within the tip gap and near-tip region in the blade passage, thus affects the heat transfer coefficient distributions. With relative endwall motion, a scraping vortex forms inside the tip gap and near the casing, and the cavity vortex gets closer to the pressure side squealer/winglet. The tip leakage vortex in the blade passage becomes closer to the blade suction surface, resulting in an increase of the heat transfer coefficient.


2021 ◽  
pp. 1-34
Author(s):  
Yousef Kanani ◽  
Sumanta Acharya ◽  
Forrest Ames

Abstract Turbine passage secondary flows are studied for a large rounded leading edge airfoil geometry considered in the experimental investigation of Varty et al. (J. Turbomach. 140(2):021010) using high resolution Large Eddy Simulation. The complex nature of secondary flow formation and evolution are affected by the approach boundary layer characteristics, components of pressure gradients tangent and normal to the passage flow, surface curvature, and inflow turbulence. This paper presents a detailed description of the secondary flows and heat transfer in a linear vane cascade at exit chord Reynolds number of 500,000 at low and high inflow turbulence. Initial flow turning at the leading edge of the inlet boundary layer leads to a pair of counter-rotating flow circulation in each half of the cross-plane that drive the evolution of the pressure-side and suction side of the near-wall vortices such as the horseshoe and leading edge corner vortex. The passage vortex for the current large leading-edge vane is formed by the amplification of the initially formed circulation closer to the pressure side which strengthens and merges with other vortex systems while moving toward the suction side. The predicted suction surface heat transfer shows good agreement with the measurements and properly captures the augmented heat transfer due to the formation and lateral spreading of the secondary flows towards the vane midspan downstream of the vane passage. Effects of various components of the secondary flows on the endwall and vane heat transfer are discussed in detail.


Author(s):  
J. Varty ◽  
L. W. Soma ◽  
F. E. Ames ◽  
S. Acharya

Secondary flows in vane passages sweep off the endwall and onto the suction surface at a location typically close to the throat. These endwall/vane junction flows often have an immediate impact on heat transfer in this region and also move any film cooling off the affected region of the vane. The present paper documents the impact of secondary flows on suction surface heat transfer acquired over a range of turbulence levels (0.7% through 17.4%) and a range of exit chord Reynolds numbers (500,000 through 2,000,000). Heat transfer data are acquired with both an unheated endwall boundary condition and a heated endwall boundary condition. The vane design includes an aft loaded suction surface and a large leading edge diameter. The unheated endwall boundary condition produces initially very high heat transfer levels due to the thin thermal boundary layer starting at the edge of heating. This unheated starting length effect quickly falls off with the thermal boundary layer growth as the secondary flow sweeps up onto the vane suction surface. The heat transfer visualization for the heated endwall condition shows no initial high heat transfer level near the edge of heating on the vane. The heat transfer level in the region affected by the secondary flows is largely uniform, except for a notable depression in the affected region. This heat transfer depression is believed due to an upwash region generated above the separation line of the passage vortex, likely in conjunction with the counter rotating suction leg of the horseshoe vortex. The extent and definition of the secondary flow affected region on the suction surface is clearly evident at lower Reynolds numbers and lower turbulence levels when the suction surface flow is largely laminar. The heat transfer in the plateau region has a magnitude similar to a turbulent boundary layer. However, the location and extent of this secondary flow affected region is less perceptible at higher turbulence levels where transitional or turbulent flow is present. Also, aggressive mixing at higher turbulence levels serves to smooth out discernable differences in the heat transfer due to the secondary flows.


Author(s):  
Michael F. Blair

An experimental study of the heat transfer distribution in a turbine rotor passage was conducted in a large–scale, ambient temperature, rotating turbine model. Meat transfer was measured for both the full–span suction and pressure surfaces of the airfoil as well as for the hub endwall surface. The objective of this program was to document the effects of flow three–dimensionality on the heat transfer in a rotating blade row (vs. a stationary cascade). Of particular interest were the effects of the hub and tip secondary flows, tip leakage and the leading–edge horseshoe vortexsystem. The effect of surface roughness on the passage heat transfer was also investigated. Midspan results are compared with both smooth–wall and rough–wall finite–difference two dimensional heat transfer predictions. Contour maps of Stanton number for both the rotor airfoil and endwall surfaces revealed numerous regions of high heat transfer produced by the three dimensional flows within the rotor passage. Of particular importance are regions of local enhancement (as much as 100% over midspan values) produced on the airfoil suction surface by the secondary flows and tip–leakage vortices and on the hub endwall by the leading–edge horseshoe vortex system.


Author(s):  
Zuo-Jun Wei ◽  
Wei-Yang Qiao ◽  
Ping-Ping Chen ◽  
Jian Liu

As modern turbines are designed with low aspect ratio and high blade loading, secondary flow interactions become more important. In the present work, numerical simulation is performed in a two-stage high-pressure turbine with divergent meridional passage to investigate the transport and interaction of secondary vortex from the first stage rotor within the second stage’s stator. Scale-Adaptive Simulation model coupled with Shear Stress Transport model (SAS-SST turbulence model) is used to capture the flow structures caused by the interaction in the second stator. Coupled with the passage vortex of the first rotor, the shed vortex rotates opposite in the direction and has comparable strength. As both of these vortices convect downstream to the stator bladerow, each deforms into two legs on the pressure and suction sides in the passage. In the passage due to the cross pressure gradient by blade loading, all the low-momentum fluid contained in these vortices moves towards the suction side. Besides, with the existing static pressure gradient in radial direction and vortex dynamics, the suction-side leg and the pressure-side leg move in different radial directions. The suction side leg of incoming passage vortex moves towards the endwall along the suction surface and interacts with the developing passage vortex of the second stator. The incoming shed vortex moves towards the midspan and rolls up the boundary layer fluid from suction surface. Due to the interactions between the incoming shed vortices from the hub and casing and the boundary layer of second stator, two counter-rotating vortices are formed near the midspan. Additional high loss is found there at the outlet plane, which has a comparable magnitude to the endwall secondary loss. The pressure side leg of the incoming passage vortex remains in a certain span with that of the incoming shed vortex and is not engulfed by the developing passage vortex.


2005 ◽  
Vol 128 (2) ◽  
pp. 310-320 ◽  
Author(s):  
M. E. Taslim ◽  
A. Khanicheh

This experimental investigation deals with impingement on the leading edge of an airfoil with and without showerhead film holes and its effects on heat transfer coefficients on the airfoil nose area as well as the pressure and suction side areas. a comparison between the experimental and numerical results are also made. the tests were run for a range of flow conditions pertinent to common practice and at an elevated range of jet Reynolds numbers (8000–48,000). The major conclusions of this study were: (a) The presence of showerhead film holes along the leading edge enhances the internal impingement heat transfer coefficients significantly, and (b) while the numerical predictions of impingement heat transfer coefficients for the no-showerhead case were in good agreement with the measured values, the case with showerhead flow was under-predicted by as much as 30% indicating a need for a more elaborate turbulence modeling.


Author(s):  
Sayuri D. Yapa ◽  
Christopher J. Elkins ◽  
John K. Eaton

Turbine vane cascades produce strong secondary flows due to flow turning. The dominant flow feature is the passage vortex, located in the corner between the endwall and the suction surface of the airfoil. Full-field, 3D velocity and concentration measurements were made using magnetic resonance imaging to study turbulent mixing in a realistic film-cooled nozzle vane cascade. The passage vortex has large effects on the flow features in the vane wake and consequently, on coolant mixing. Cross-flow vorticity on the vane’s suction side rolls up and forms the suction-side leg of the horseshoe vortex, which then interacts with the cross-flow boundary layer and rolls up into the passage vortex. The passage vortex does not measurably increase the turbulent diffusivity, although it does strongly distort streamlines near the endwall.


Sign in / Sign up

Export Citation Format

Share Document