Experimental Study on a Twin Unidirectional Impulse Turbine for Wave Energy Conversion

Author(s):  
Manabu Takao ◽  
Md. Mahbubu Alam ◽  
Toshiaki Setoguchi ◽  
V. Jayashankar

A twin unidirectional impulse turbine has been proposed in order to enhance the performance of wave energy plant. This turbine system uses two unidirectional impulse turbines and their flow direction is different each other. However, the turbine characteristics have not been clarified to date. The performances of a unidirectional impulse turbine under steady flow conditions were investigated experimentally by using a wind tunnel with large piston/cylinder in this study.

Author(s):  
Toshiaki Setoguchi ◽  
Manabu Takao ◽  
Kenji Kaneko ◽  
Shuichi Nagata ◽  
Kazutaka Toyota

The objective of this paper is to present the effect of end plate on the performances of the impulse turbine for wave energy conversion by experimental investigation. The experiments have been performed by model testing under steady flow conditions in the study. And then, the performances of the impulse turbine with end plates have been compared with those of the original impulse turbine, i.e., the impulse turbine without end plate. As a result, it is found that the characteristics of the impulse turbine with end plates are superior to those of the original impulse turbine. Furthermore, the effects of end plate size and penetration on the turbine characteristics have been clarified in the study.


2016 ◽  
Vol 2016 (0) ◽  
pp. 0607
Author(s):  
Tengen MURAKAMI ◽  
Yasutaka IMAI ◽  
Shuichi NAGATA ◽  
Manabu TAKAO ◽  
Toshiaki SETOGUCHI

2021 ◽  
Vol 2021.59 (0) ◽  
pp. 07a5
Author(s):  
Keisuke KITANO ◽  
Yasutaka HAYAMIZU ◽  
Takayuki SUZUKI ◽  
Shigeru OHTSUKA ◽  
Shinichi MORITA ◽  
...  

Author(s):  
A. R. Ansari ◽  
H. B. Khaleeq ◽  
A. Thakker

This paper presents a comparison of self-rectifying turbines for the Oscillating Water Column (OWC) based Wave Energy power extracting device using numerical simulation. The two most commonly used turbines for OWC based devices, the Impulse and the Wells turbines were evaluated under real sea simulated conditions. Assuming the quasi-steady condition, experimental data for both 0.6m turbines with 0.6 hub to tip ratio was used to predict their behavior under real sea conditions. The real sea water surface elevation time history data was used to simulate the flow conditions using standard numerical simulation techniques. A simple geometry of the OWC was considered for the simulation. The results show that the overall mean performance of an Impulse turbine is better than the Wells turbine under unsteady, irregular real sea conditions. The Impulse turbine was observed to be more stable over a wide range of flow conditions. This paper reports the comparison of performance characteristics of both these turbines under simulated real sea conditions.


Author(s):  
Hideki Sato ◽  
Manabu Takao ◽  
Shinya Okuhura ◽  
Miah Md. Ahsraful Alam ◽  
Toshiaki Setoguchi

As an air turbine equipped with oscillating water column (OWC) based wave energy plant, a rectification-valve system has been invented to date. However, this turbine system has problems with the durability of the valves and the complex mechanism. Moreover, it has a major fault in that the valves must be large for high output. Therefore, a twin unidirectional impulse turbine topology has been suggested in previous studies in order to use conventional unidirectional turbines without valves [1, 2]. The topology is composed of two unidirectional impulse turbines. However, the past study indicated that the mean efficiency of the topology was shown to be low, when the performance prediction of the topology in oscillating airflow was carried out by means of quasi-steady analysis [2]. Further, the cause of the low efficiency is because part of the air flow gets through the unidirectional impulse turbine in the direction of low efficiency [2]. In this study, a fluidic diode [3, 4] is adopted in order to suppress the air flow rate into the inefficient turbine in a twin unidirectional impulse turbine topology for wave energy plant, and the effect of the fluidic diodes on the performance of twin unidirectional impulse turbine topology is investigated by a wind tunnel test and computational fluid dynamics (CFD). Further, its usefulness is discussed from a view point of the turbine mean efficiency under unsteady flow condition.


Sign in / Sign up

Export Citation Format

Share Document