Applicable Contact Force Models for the Discrete Element Method: The Single Particle Perspective

2008 ◽  
Vol 131 (2) ◽  
Author(s):  
H. Kruggel-Emden ◽  
S. Wirtz ◽  
V. Scherer

Several processes in nature as well as many industrial applications involve static or dynamic granular materials. Granulates can adopt solid-, liquid-, or gaslike states and thereby reveal intriguing physical phenomena not observable in its versatility for any other form of matter. The frequent occurrence of phase transitions and the related characteristics thereby strongly affect their processing quality and economics. This situation demands for prediction methods for the behavior of granulates. In this context simulations provide a feasible alternative to experimental investigations. Several different simulation approaches are applicable to granular materials. The time-driven discrete element method turns out to be not only the most complex but also the most general simulation approach. Discrete element simulations have been used in a wide variety of scientific fields for more than 30 years. With the tremendous increase in available computer power, especially in the past years, the method is more and more developing to the state of the art simulation technique for granular materials not only in science but also in industrial applications. Several commercial software packages utilizing the time-driven discrete element method have emerged and are becoming more and more popular within the engineering community. Despite the long time of usage of the time-driven discrete element method, model advances derived and theoretical and experimental studies performed in the different branches of application lack harmonization. They thereby provide potential for improvements. Therefore, the scope of this paper is a review of methods and models for contact forces based on theoretical considerations and experimental data from literature. Particles considered are of spherical shape. Through model advances it is intended to contribute to a general enhancement of simulation techniques, which help improve products and the design of the related equipment.

Author(s):  
Harald Kruggel-Emden ◽  
Siegmar Wirtz ◽  
Viktor Scherer

Several processes in nature as well as many industrial applications involve static or dynamic granular materials. Granulates can adopt solid, liquid or gas like states and thereby reveal intriguing physical phenomena not observable in its versatility for any other form of matter. The frequent occurrence of phase transitions and the related characteristics thereby strongly affect their processing quality and economics. This situation demands for prediction methods for the behavior of granulates. In this context simulations provide a feasible alternative to experimental investigations. Several different simulation approaches are applicable to granular materials. The time-driven Discrete Element Method turns out to be the most complex but also as the most general method. The method has been used in a wide variety of scientific fields for more than thirty years. With the tremendous increase in available computer power, especially in the last years, the method is more and more developing to the state of the art simulation technique for granular materials. Despite of the long time of usage, model advances and theoretical and experimental studies are not harmonized in the different branches of application, providing potential for improvements. Therefore, the scope of this paper is a review of methods and models based on theoretical considerations and experimental data from literature. Through model advances it is intended to contribute to a general enhancement of techniques, which are then directly available for simulations.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Xinran Chen ◽  
Jinsong Qian ◽  
Lei Zhang ◽  
Jianming Ling

The three-dimensional discrete element method (DEM) was employed to investigate the combined effects of inherent and stress-induced anisotropy of granular materials. The particles were modeled following real particle shapes. Both isotropic and inherently anisotropic specimens were prepared, and then true triaxial numerical tests were conducted using different intermediate principle stress ratios (b). The results indicate that the oriented particles in the anisotropic specimens form strong contacts in their long axis direction in the early stages of shearing, which restrains the contraction of the specimens. As the strain increases, the oriented particles start to rotate and slide, which results in shorter contraction stages and fewer number of interparticle contacts with peak values compared to the isotropic specimens. In addition, the increase in b values aggravates the rotating and sliding of particles in the inherently anisotropic specimens and restrains the contraction of the granular and the increase of contact forces. As a result, the inherent anisotropy reduces the effects of stress-induced anisotropy on the mechanical behavior of granular materials.


2021 ◽  
Author(s):  
Christoph Rettinger ◽  
Sebastian Eibl ◽  
Ulrich Rüde ◽  
Bernhard Vowinckel

<p>With the increasing computational power of today's supercomputers, geometrically fully resolved simulations of particle-laden flows are becoming a viable alternative to laboratory experiments. Such simulations enable detailed investigations of transport phenomena in various multiphysics scenarios, such as the coupled interaction of sediment beds with a shearing fluid flow. There, the majority of available simulations as well as experimental studies focuses on setups of monodisperse particles. In reality, however, polydisperse configurations are much more common and feature unique effects like vertical size segregation.</p><p>In this talk, we will present numerical studies of mobile polydisperse sediment beds in a laminar shear flow, with a ratio of maximum to minimum diameter up to 10. The lattice Boltzmann method is applied to represent the fluid dynamics through and above the sediment bed efficiently. We model particle interactions by a discrete element method and explicitly account for lubrication forces. The fluid-particle coupling mechanism is based on the geometrically fully resolved momentum transfer between the fluid and the particulate phase. We will highlight algorithmic aspects and communication schemes essential for massively parallel execution.</p><p>Utilizing these capabilities allows us to achieve large-scale simulations with more than 26.000 densely-packed polydisperse particles interacting with the fluid. With this, we are able to reproduce effects like size segregation and to study the rheological behavior of such systems in great detail. We will evaluate and discuss the influence of polydispersity on these processes. These insights will be used to improve and extend existing macroscopic models.</p>


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Hongyi Zhao ◽  
Jing Chen

Railway ballast is a coarse granular material used to carry train loads and provide drainage for the rail tracks. This study presents numerical explorations of the mechanical performance of ballast aggregates subjected to direct shear tests. The discrete element method (DEM) was used to investigate the microscopic characteristics of ballast aggregates during shearing while considering contact distribution, particle rotation, and particle displacement. By testing the angle of repose of ballast aggregates, the parameters for the DEM contact model could be calibrated. Four specimens were prepared and then subjected to different normal pressures. The results show that the contact between ballast particles intensifies in terms of the amount and magnitude as the normal pressure increases. A Fourier analysis was applied to investigate the anisotropy of contact normal and the contact forces for ballast aggregates at different shearing phases. The rotational and translational movements of ballast particles were investigated, and this investigation revealed that particle rotation gradually increased as the shearing propagated. Four regions in the aggregates were identified according to the translational pattern of ballast particles. The results of this research provide an in-depth analysis of microscopic characteristics from a particulate scale.


Sign in / Sign up

Export Citation Format

Share Document