Effect of 1D Cu Nanostructures on Heat Transfer Characteristics of Single Phase Microchannel Heat Sink

Author(s):  
M. Yakut Ali ◽  
Fanghao Yang ◽  
Ruixian Fang ◽  
Chen Li ◽  
Jamil Khan

This study experimentally assesses single phase heat transfer characteristics of a shallow rectangular microchannel heat sink whose surface is enhanced with copper nanowires (CuNWs). The hydraulic diameter of the channel is 672 μm and the bottom wall is coated with Cu nanowires (CuNWs) of 200 nm in diameter and 50 μm in length. CuNWs are grown on the Cu heat sink by electrochemical synthesis technique which is inexpensive and readily scalable. The heat transfer and pressure drop results of CuNWs enhanced heat sink are compared with that of bare copper heat sink using deionized (DI) water as the working fluid at Reynolds Number (Re) ranging from 106–636. The experimental results indicate an enhancement in Nusselt Number (Nu) at all Re with a maximum enhancement of 24% at Re = 106. The enhanced thermal performance is attributed to two properties of Cu nanowire arrays — improvement in surface wettability characteristics and increased heat transfer surface area.

Author(s):  
Blake E. Jakaboski ◽  
Yogendra Joshi ◽  
Michael Rightley

A new type of microchannel heat sink has been developed and evaluated in this study. The device consists of silicon microchannels on whose bottom surfaces multi-walled carbon nanotubes are grown. The objective of the study is to investigate the effect of carbon nanotubes on the heat transfer characteristics. The heat sink size is 15 mm × 15 mm × 0.675 mm. It contains two microchannel designs. One consists of eight channels of cross section 682 μm × 50 μm; the other has six channels of cross section 942 μm × 50 μm. The heat sink is incorporated in an open loop flow facility, with water as the coolant. Six different configurations are compared. Two have no nanotubes, two have closely spaced nanotube, while the last two designs have widely spaced nanotubes. The tests utilize an infrared camera as well as thermocouples placed in the flow for characterization. The heat transfer characteristics are compared for the different cases.


Sign in / Sign up

Export Citation Format

Share Document