Application of AI in Optimization of Machining Conditions

Author(s):  
Tongjian Chen ◽  
Weiping Wang ◽  
Xiaofang Wang

Abstract In these days researchers have been attempting to build up a versatile optimization method which is adaptable for all the purposes but no ideal one has been appeared. The paper proposes a new consideration for practising the optimization of machining conditions in various machining processes on workshop scenes. The optimizing strategy is through an expert system of selection to determine a most effective algorithm from the current sophiticated optimizing algorithms collected in the knowledge base as subroutines, then to run the algorithem program and obtain the optimized results by means of the interactive function of expert system. The method not only has the versatile property to be used in various sorts of machining easily but also keeps the completeness of each sophiticated optimizing method developed for a special machining process without compromise.

Author(s):  
Yi-Chung Hu ◽  
Ruey-Shun Chen ◽  
Gwo-Hshiung Tzeng ◽  
Jia-Hourng Shieh

Since fuzzy knowledge representation can facilitate interaction between an expert system and its users, the effective construction of a fuzzy knowledge base is important. Fuzzy sequential patterns described by natural language are one type of fuzzy knowledge representation, and can thus be helpful in building a prototype fuzzy knowledge base. We define that a fuzzy sequence is an ordered list of frequent fuzzy grids, and the length of a fuzzy sequence is the number of frequent fuzzy grids in the frequent fuzzy sequence. Frequent fuzzy grids and frequent fuzzy sequences can be determined by comparing individual fuzzy supports with the user-specified minimum fuzzy support. A fuzzy sequential pattern is just a frequent fuzzy sequence, but it is not contained in any other frequent fuzzy sequence. In this paper, an effective algorithm called the Fuzzy Grids Based Sequential Patterns Mining Algorithm (FGBSPMA) is proposed to generate fuzzy sequential patterns. A numerical example is used to show an analysis of the user visit to websites, demonstrating the usefulness of the proposed algorithm.


2021 ◽  
pp. 1-13
Author(s):  
Hao Deng ◽  
Albert C. To

Abstract This paper proposes a novel density-based method for structural design considering restrictions of multiaxis machining processes. A new mathematical formulation based on Heaviside function is presented to transform the design field into a geometry which can be manufactured by multi-axis machining process. The formulation is developed for 5-axis machining, which can be also applied to 2.5D milling restriction. The filter techniques are incorporated to effectively control the minimum size of void region. The proposed method is demonstrated by solving the compliance minimization problem for different machinable freeform designs. Several two and three-dimensional numerical examples are presented and discussed in detail.


Author(s):  
Jami J. Shah ◽  
David W.-C. Hsiao

Abstract The work reported here is part of a larger project aimed at developing a system for concurrent design and manufacturing. One of the manufacturing applications is manufacturability evaluation performed on design models based on features. The model is not restricted to a limited set of predefined features, but can contain user-defined features that the application program, such as the Manufacturability Evaluator, has no prior knowledge of. A methodolgy was developed whereby the manufacturability evaluator could understand design features from a manufacturing viewpoint and automonously generate feasible machining process sequences for undocumented features. This requires that the system decompose design features into some generic fundamental terms and compare this representation to the capabilities of common machining operations. Therefore, the system needs deeper knowledge about machining processes than that afforded by production rules. In our method, undocumented features are partially evaluated to derive the faces intersecting at concave edges. An algorithm is developed to organize these faces into manufacturing features. The meta knowledge base captures the fundamental characteristics of a machining process by its elementary producible volume and the limitations of tool motions. This representation enables the manufactuability evaluator to create alternative machining sequences for undocumented features.


2020 ◽  
Vol 38 (11A) ◽  
pp. 1593-1601
Author(s):  
Mohammed H. Shaker ◽  
Salah K. Jawad ◽  
Maan A. Tawfiq

This research studied the influence of cutting fluids and cutting parameters on the surface roughness for stainless steel worked by turning machine in dry and wet cutting cases. The work was done with different cutting speeds, and feed rates with a fixed depth of cutting. During the machining process, heat was generated and effects of higher surface roughness of work material. In this study, the effects of some cutting fluids, and dry cutting on surface roughness have been examined in turning of AISI316 stainless steel material. Sodium Lauryl Ether Sulfate (SLES) instead of other soluble oils has been used and compared to dry machining processes. Experiments have been performed at four cutting speeds (60, 95, 155, 240) m/min, feed rates (0.065, 0.08, 0.096, 0.114) mm/rev. and constant depth of cut (0.5) mm. The amount of decrease in Ra after the used suggested mixture arrived at (0.21µm), while Ra exceeded (1µm) in case of soluble oils This means the suggested mixture gave the best results of lubricating properties than other cases.


2012 ◽  
Vol 12 (5) ◽  
pp. 699-706 ◽  
Author(s):  
B. S. Marti ◽  
G. Bauser ◽  
F. Stauffer ◽  
U. Kuhlmann ◽  
H.-P. Kaiser ◽  
...  

Well field management in urban areas faces challenges such as pollution from old waste deposits and former industrial sites, pollution from chemical accidents along transport lines or in industry, or diffuse pollution from leaking sewers. One possibility to protect the drinking water of a well field is the maintenance of a hydraulic barrier between the potentially polluted and the clean water. An example is the Hardhof well field in Zurich, Switzerland. This paper presents the methodology for a simple and fast expert system (ES), applies it to the Hardhof well field, and compares its performance to the historical management method of the Hardhof well field. Although the ES is quite simplistic it considerably improves the water quality in the drinking water wells. The ES knowledge base is crucial for successful management application. Therefore, a periodic update of the knowledge base is suggested for the real-time application of the ES.


2021 ◽  
Vol 54 (6) ◽  
pp. 421-424
Author(s):  
H. Kim ◽  
D. A. Chuvikov ◽  
D. V. Aladin ◽  
O. O. Varlamov ◽  
L. E. Adamova ◽  
...  

2020 ◽  
Vol 87 (12) ◽  
pp. 757-767
Author(s):  
Robert Wegert ◽  
Vinzenz Guski ◽  
Hans-Christian Möhring ◽  
Siegfried Schmauder

AbstractThe surface quality and the subsurface properties such as hardness, residual stresses and grain size of a drill hole are dependent on the cutting parameters of the single lip deep hole drilling process and therefore on the thermomechanical as-is state in the cutting zone and in the contact zone between the guide pads and the drill hole surface. In this contribution, the main objectives are the in-process measurement of the thermal as-is state in the subsurface of a drilling hole by means of thermocouples as well as the feed force and drilling torque evaluation. FE simulation results to verify the investigations and to predict the thermomechanical conditions in the cutting zone are presented as well. The work is part of an interdisciplinary research project in the framework of the priority program “Surface Conditioning in Machining Processes” (SPP 2086) of the German Research Foundation (DFG).This contribution provides an overview of the effects of cutting parameters, cooling lubrication and including wear on the thermal conditions in the subsurface and mechanical loads during this machining process. At first, a test set up for the in-process temperature measurement will be presented with the execution as well as the analysis of the resulting temperature, feed force and drilling torque during drilling a 42CrMo4 steel. Furthermore, the results of process simulations and the validation of this applied FE approach with measured quantities are presented.


Proceedings ◽  
2020 ◽  
Vol 58 (1) ◽  
pp. 1
Author(s):  
Roberto Melli ◽  
Enrico Sciubba

This paper presents a critical and analytical description of an ongoing research program aimed at the implementation of an expert system capable of monitoring, through an Intelligent Health Control procedure, the instantaneous performance of a cogeneration plant. The expert system is implemented in the CLIPS environment and is denominated PROMISA as the acronym for Prognostic Module for Intelligent System Analysis. It generates, in real time and in a form directly useful to the plant manager, information on the existence and severity of faults, forecasts on the future time history of both detected and likely faults, and suggestions on how to control the problem. The expert procedure, working where and if necessary with the support of a process simulator, derives from the available real-time data a list of selected performance indicators for each plant component. For a set of faults, pre-defined with the help of the plant operator (Domain Expert), proper rules are defined in order to establish whether the component is working correctly; in several instances, since one single failure (symptom) can originate from more than one fault (cause), complex sets of rules expressing the combination of multiple indices have been introduced in the knowledge base as well. Creeping faults are detected by analyzing the trend of the variation of an indicator over a pre-assigned interval of time. Whenever the value of this ‘‘discrete time derivative’’ becomes ‘‘high’’ with respect to a specified limit value, a ‘‘latent creeping fault’’ condition is prognosticated. The expert system architecture is based on an object-oriented paradigm. The knowledge base (facts and rules) is clustered—the chunks of knowledge pertain to individual components. A graphic user interface (GUI) allows the user to interrogate PROMISA about its rules, procedures, classes and objects, and about its inference path. The paper also presents the results of some simulation tests.


Sign in / Sign up

Export Citation Format

Share Document