3-D Elasto-Plastic Contact Finite Element Analysis for Bearings Design

Author(s):  
Wang Shigang ◽  
Yu Jun ◽  
Zhou Ji ◽  
Li Mingzhang

Abstract In this paper, A 3-D elasto-plastic contact problem in bearings is studied by Finite Element Method (FEM). A computer program has been developed for this purpose. A trial-error method is employed to cope with the geometrical nonlinearity and a tangential stiffness method is employed to tackle the material nonlinearity appeared in elasto-plastic contact problems. A frictionless contact problem of roller bearings is analysed, the result reveals that in 3-D elasto-plastic state the trend of the contact surface pressure distribution is similar to Hertz problem’s but flater.

2006 ◽  
Vol 505-507 ◽  
pp. 709-714
Author(s):  
Tsung Chia Chen ◽  
You Min Huang

This study aims to clarify the process conditions of the hat-type drawing of a sheet metal of steel. It provides a model that predicts not only the correct punch load for drawing, but also the precise final shape of products after unloading, based on the tensile properties of the material and the geometry of the tools used. An elasto-plastic incremental finite-element computer code, based on an updated Lagrangian formulation, was developed to simulate the hat-type drawing of sheet metal. In particular, selective reduced integration was adopted to formulate the stiffness matrix. The extended r-minimum technique was used to deal with the elasto-plastic state and contact problems at the tool-metal interface. A series of simulations were performed to validate the formulation in the theory, leading to the development of the computer codes. The whole deformation history and the distribution of stress and strain during the forming process were obtained by carefully considering the moving boundary condition in the finite-element method. Results in this study clearly demonstrated that the computer code for simulating the hat-type drawing process was efficient.


2010 ◽  
Vol 145 ◽  
pp. 68-72 ◽  
Author(s):  
Zhi Wei Wang ◽  
Ling Qin Meng ◽  
Wen Si Hao ◽  
E Zhang

Contact problem is one of the most basic problems in the analysis of roller bearings, and the analysis and computation of contact stress and contact deformation are of great importance in roller bearing design. To solve the contact problems of roller bearing, we could use the Traditional method-- Hertz theory, the traditional method to solve the contact problems of roller bearings, is limited in the precision and unable to show the distribution characteristic of stress in contact area.In this paper, we use Finite Element Analysis software ANSYS to do research on contact problem of tapered roller bearing 3811/750/HC, and by means of comparison with the results gained by the Hertz theory we prove the feasibility of roller bearing contact problem by Finite Element Method. Hence, a more efficient method of improving the service life of rollers is got.


2011 ◽  
Vol 264-265 ◽  
pp. 166-171
Author(s):  
Tsung Chia Chen

This study aims to clarify the process conditions of the radial compression of aluminum tube. It provides a model that predicts not only the correct punch load for compression, but also the precise final shape of products after unloading, based on the compression properties of the material and the geometry of the tools used. An elasto-plastic incremental finite-element computer code, based on an updated Lagrangian formulation, was developed to simulate the radial compression of aluminum tube. In particular, selective reduced integration was adopted to formulate the stiffness matrix. The extended r-minimum technique was used to deal with the elasto-plastic state and contact problems at the tool-metal interface. A series of simulations were performed to validate the formulation in the theory, leading to the development of the computer codes. The whole deformation history and the distribution of stress and strain during the forming process were obtained by carefully considering the moving boundary condition in the finite-element method. Results in this study clearly demonstrated that the computer code for simulating the radial compression of aluminum tube was efficient.


2018 ◽  
Vol 920 ◽  
pp. 16-21
Author(s):  
Chien Yi Chen ◽  
Tsung Chia Chen

This study is mainly based on five sets of mold cone angle and friction coefficient of micro-tube tube end necking forming analysis, and the tool cone angle of 60° experimental verification is carried out to analyze the titanium alloy (Grade 1) micro-tube for different mold cone angle and the different friction coefficient caused by the difference between the shrinkage forming. In this paper, Prandtl-Reuss's plastic flow rule, combined with finite element deformation theory and updated Lagrangian formulation (ULF) concept, establish an incremental elasto-plastic finite element analysis program for simulating the miniature tube end necking. The forming process also uses the generalized rmin algorithm to deal with elasto-plastic state and contact problems. From the simulation data of necking process, deformation history, punch load and punch stroke, stress and strain distribution is obtained. The analysis results show that by increasing the mold cone angle and friction coefficient, the thickness tends to be thicker in the certain area.


1999 ◽  
Author(s):  
H.-J. Chun ◽  
S. W. Lee ◽  
I. M. Daniel

Abstract A finite element analysis model was developed to predict flexural behavior of thick composites with uniform, graded and localized fiber waviness. In the analyses, material and geometrical nonlinearties due to fiber waviness were incorporated into the model utilizing energy density and an incremental method. In the model, two kinds of geometrical nonlinearity were considered, one due to reorientation of fibers and the other due to difference of curvatures from one finite element to another during deformation. The finite element analyses utilize the iterative mapping method to incorporate these geometrical nonlinear factors. The model was used to predict not only the flexural behavior of a flat thick composite plate but also of a thick composite plate with initial curvature. Flat composite specimens with various degrees of fiber waviness were fabricated and four-point flexural tests were conducted. The predicted nonlinear behavior by the current model was compared with results from the thin slice model [7] and experiments. Good agreement was observed among them.


2007 ◽  
Vol 345-346 ◽  
pp. 525-528
Author(s):  
Shi Jie Wang ◽  
Kang Jian ◽  
Lv Jianhua

Thrust bearing is one of the most important components in esPCP system, which determines the lifespan of the whole system under the restriction of some factors such as the depth of downhole unit, the viscosity of petroleum oil to be pumped. To increase the high temperature bearing ability of the bearings under the limitation of radial size, the damage reason of pre-applied bearings was analyzed. Some different modified plans were put forward from two aspects of structure and material. Contact problems were researched for different plans with finite element analysis software of ANSIS. Comparison of results shows that, in the well of 5½" tube, the optimum selection is ball thrust bearing with 8 balls of radial size of 10mm without keeper.


1998 ◽  
Vol 1624 (1) ◽  
pp. 225-230 ◽  
Author(s):  
Chuntao Zhang ◽  
Ian D. Moore

Thermoplastic pipes are being used increasingly for water supply lines, storm sewers, and leachate collection systems in landfills. To facilitate limit states design for buried polymer pipes, nonlinear constitutive models have recently been developed to characterize the highly nonlinear and time-dependent material behavior of high-density polyethylene (HDPE). These models have been implemented in a finite element program to permit structural analysis for buried HDPE pipes and to provide information regarding performance limits of the structures. Predictions of HDPE pipe response under parallel plate loading and hoop compression in a soil cell are reported and compared with pipe response measured in laboratory tests. Effects on the structural performance of pipe material nonlinearity, geometrical nonlinearity, and backfill soil properties were investigated. Good correlations were found between the finite element predictions and the experimental measurements. The models can be used to predict pipe response under many different load histories (not just relaxation or creep). Work is ongoing to develop nonlinear constitutive models for polyvinylchloride and polypropylene to extend the predictive capability of the finite element model to these materials.


Sign in / Sign up

Export Citation Format

Share Document