Nonlinear Finite Element Analysis for Thermoplastic Pipes

1998 ◽  
Vol 1624 (1) ◽  
pp. 225-230 ◽  
Author(s):  
Chuntao Zhang ◽  
Ian D. Moore

Thermoplastic pipes are being used increasingly for water supply lines, storm sewers, and leachate collection systems in landfills. To facilitate limit states design for buried polymer pipes, nonlinear constitutive models have recently been developed to characterize the highly nonlinear and time-dependent material behavior of high-density polyethylene (HDPE). These models have been implemented in a finite element program to permit structural analysis for buried HDPE pipes and to provide information regarding performance limits of the structures. Predictions of HDPE pipe response under parallel plate loading and hoop compression in a soil cell are reported and compared with pipe response measured in laboratory tests. Effects on the structural performance of pipe material nonlinearity, geometrical nonlinearity, and backfill soil properties were investigated. Good correlations were found between the finite element predictions and the experimental measurements. The models can be used to predict pipe response under many different load histories (not just relaxation or creep). Work is ongoing to develop nonlinear constitutive models for polyvinylchloride and polypropylene to extend the predictive capability of the finite element model to these materials.

Author(s):  
Xiao-Yan Gong ◽  
Alan R. Pelton

Nitinol, an alloy of about 50% Ni and 50% Ti, is a very unique material. At constant temperature above its Austenite finish (Af) temperature, under uniaxial tensile test, the material is highly nonlinear and capable of large deformation to the ultimate strain on the order of 15%. This material behavior, known as superelasticity, along with its excellent biocompatibility and corrosion resistance, makes Nitinol a perfect material candidate for many medical device applications. However, the nonlinear material response also requires a specific material description to perform the stress analysis. The user developed material subroutine from HKS/West makes the simulation of the Nitinol devices possible. This article presents two case studies of the nonlinear finite element analysis using ABAQUS/Standard and the Nitinol UMAT.


2010 ◽  
Vol 10 (01) ◽  
pp. 151-166 ◽  
Author(s):  
YUAN LI ◽  
GLADIUS LEWIS

One feature of the literature on finite element analysis of models of cervical spine segment(s) is that an assortment of constitutive models has been used for the elastic behavior of the annulus fibrosus (AF) and the nucleus pulposus (NF). The extent to which the model assigned to each of these tissues affects the values of the biomechanical parameters of interest of the model is lacking. This issue was the subject of the present study. We used a three-dimensional solid model of the C4–C6 motion segment units (which comprised the vertebral bodies, the bony posterior elements (transverse processes, pedicles, laminae, spinous processes, and facet joints), the intervertebral discs (IVDs), the endplates, and the five major ligaments) and eight combinations of constitutive models. It was found that (1) the influence of the constitutive material models used depended on the tissue considered, with some, such as the posterior endplate of C5 and the cancellous bone of C6, showing marked sensitivity, while others, such as the cancellous bone of C4 and the cortical bone of C5, were moderately affected; and (2) the biomechanical performance of the spine model is more sensitive to the material behavior model used for the AF than it is to that used for the NF. These results suggest that experimental and computational efforts expended in obtaining the most appropriate constitutive model for the elastic behavior of the two parts of the IVD, in particular the AF, are justified.


2005 ◽  
Vol 42 (6) ◽  
pp. 1675-1694 ◽  
Author(s):  
Sean D Hinchberger ◽  
R Kerry Rowe

Two elastic-viscoplastic constitutive formulations are evaluated using laboratory and field data from Sackville, New Brunswick and Gloucester, Ontario. Both constitutive models have been implemented in a finite element program and formulated for undrained analysis and fully coupled analysis based on Biot consolidation theory. A laboratory study of the rate-sensitive behaviour of Sackville clay is described. The response of Sackville clay during consolidated anisotropic undrained (CAU) triaxial creep, CAU triaxial compression, and incremental oedometer consolidation is compared with the calculated behaviour. The comparisons demonstrate the general ability of three-parameter elastic-viscoplastic constitutive models to satisfactorily describe the rate-dependent behaviour of Sackville clay. The measured response of Gloucester clay during long-term Rowe cell consolidation tests is compared with the calculated behaviour, and the predictive ability of both constitutive formulations is evaluated using the field performance of the Gloucester case record. In undertaking the present study, the predictive ability of two elastic-viscoplastic constitutive models is examined for two soft clays. A new method of overstress measurement is introduced for elliptical yield surfaces and the importance of adopting a scalable yield surface for the constitutive modeling of soft clay is demonstrated. A model that is suitable for the study of reinforced and unreinforced embankments on soft rate-sensitive clay foundations is identified.Key words: elastic-viscoplastic, finite element analysis, overstress viscoplasticity, case study, rate-sensitive, coupled analysis.


2014 ◽  
Vol 501-504 ◽  
pp. 731-735
Author(s):  
Li Zhang ◽  
Kang Li

This paper analyzes the influence degree of related design parameters of wire-mesh frame wallboard on deformation through finite element program, providing theoretical basis for the design and test of steel wire rack energy-saving wallboard.


Aerospace ◽  
2005 ◽  
Author(s):  
Vinod P. Veedu ◽  
Davood Askari ◽  
Mehrdad N. Ghasemi-Nejhad

The objective of this paper is to develop constitutive models to predict thermoelastic properties of carbon single-walled nanotubes using analytical, asymptotic homogenization, and numerical, finite element analysis, methods. In our approach, the graphene sheet is considered as a non-homogeneous network shell layer which has zero material properties in the regions of perforation and whose effective properties are estimated from the solution of the appropriate local problems set on the unit cell of the layer. Our goal is to derive working formulas for the entire complex of the thermoelastic properties of the periodic network. The effective thermoelastic properties of carbon nanotubes were predicted using asymptotic homogenization method. Moreover, in order to verify the results of analytical predictions, a detailed finite element analysis is followed to investigate the thermoelastic response of the unit cells and the entire graphene sheet network.


1999 ◽  
Author(s):  
H.-J. Chun ◽  
S. W. Lee ◽  
I. M. Daniel

Abstract A finite element analysis model was developed to predict flexural behavior of thick composites with uniform, graded and localized fiber waviness. In the analyses, material and geometrical nonlinearties due to fiber waviness were incorporated into the model utilizing energy density and an incremental method. In the model, two kinds of geometrical nonlinearity were considered, one due to reorientation of fibers and the other due to difference of curvatures from one finite element to another during deformation. The finite element analyses utilize the iterative mapping method to incorporate these geometrical nonlinear factors. The model was used to predict not only the flexural behavior of a flat thick composite plate but also of a thick composite plate with initial curvature. Flat composite specimens with various degrees of fiber waviness were fabricated and four-point flexural tests were conducted. The predicted nonlinear behavior by the current model was compared with results from the thin slice model [7] and experiments. Good agreement was observed among them.


Author(s):  
Wang Shigang ◽  
Yu Jun ◽  
Zhou Ji ◽  
Li Mingzhang

Abstract In this paper, A 3-D elasto-plastic contact problem in bearings is studied by Finite Element Method (FEM). A computer program has been developed for this purpose. A trial-error method is employed to cope with the geometrical nonlinearity and a tangential stiffness method is employed to tackle the material nonlinearity appeared in elasto-plastic contact problems. A frictionless contact problem of roller bearings is analysed, the result reveals that in 3-D elasto-plastic state the trend of the contact surface pressure distribution is similar to Hertz problem’s but flater.


2014 ◽  
Vol 908 ◽  
pp. 282-286
Author(s):  
Wan Rong Wu ◽  
Lin Chen

Drilling frame on TD165CH Down-The-Hole Drill that has large slenderness ratio and be longer than 10m is one component of Down-The-Hole drill which is mainly subjected to load.In the process of drilling, drilling frame is not only subjected to loads which are like tensile, compression and torsion and so on, and be under the influence of impacting and vibration of impactor,the situation of force is complicated.By analysing of working condition of Down-The-Hole drill,there get all kinds of limit states of typical working conditions, and then using Ansys doing finite element analysis, there get distribution of the stress and strain of drilling frame and the result of modal analysis to check whether drilling frame meets the requirements of strength and stiffness or not,and whether it is possible to resonate with the impactor or not.By analysis,Structure strength and stiffness of drilling Frame on TD165CH Down-The-Hole drill meet the requirements of practical engineering, and drilling Frame does not resonate with the impactor.


2018 ◽  
Vol 13 (2) ◽  
pp. 146-155 ◽  
Author(s):  
Zhuoya Yuan ◽  
Pui-Lam Ng ◽  
Darius Bačinskas ◽  
Jinsheng Du

To consider the effect of non-uniform shrinkage of box girder sections on the long-term deformations of continuous rigid frame bridges, and to improve the prediction accuracy of analysis in the design phase, this paper proposes a new simulation technique for use with general-purpose finite element program. The non-uniform shrinkage effect of the box girder is transformed to an equivalent temperature gradient and then applied as external load onto the beam elements in the finite element analysis. Comparative analysis of the difference in deflections between uniform shrinkage and nonuniform shrinkage of the main girder was made for a vehicular bridge in reality using the proposed technique. The results indicate that the maximum deflection of box girder under the action of non-uniform shrinkage is much greater than that under the action of uniform shrinkage. The maximum downward deflection of the bridge girder caused by uniform shrinkage is 5.6 mm at 20 years after completion of bridge deck construction, whereas the maximum downward deflection caused by non-uniform shrinkage is 21.6 mm, which is 3.8 times larger. This study shows that the non-uniform shrinkage effect of the girder sections has a significant impact on the long-term deflection of continuous rigid frame bridge, and it can be accurately simulated by the proposed transformation technique.


2018 ◽  
Vol 3 (1) ◽  
pp. 13-20
Author(s):  
Dávid Huri

Automotive rubber products are subjected to large deformations during working conditions, they often contact with other parts and they show highly nonlinear material behavior. Using finite element software for complex analysis of rubber parts can be a good way, although it has to contain special modules. Different types of rubber materials require the curve fitting possibility and the wide range choice of the material models. It is also important to be able to describe the viscoelastic property and the hysteresis. The remeshing possibility can be a useful tool for large deformation and the working circumstances require the contact and self contact ability as well. This article compares some types of the finite element software available on the market based on the above mentioned features.


Sign in / Sign up

Export Citation Format

Share Document