Design Science: Meta-Science to Engineering Design

Author(s):  
W. Ernst Eder

Abstract Following on from a paper presented at a previous Design Automation Conference (Eder 1986), this paper outlines some of the more recent insights concerning engineering design that have been developed by a small international group. Some of the models of designing and technical systems have been improved. A morphology of knowledge about designing and technical systems has been proposed, and extended to a morphology of knowledge itself. Some consequences are drawn from these developments, and summarized in this paper.

Author(s):  
W. Ernst Eder

‘Design’ can be a noun, or a verb. Six paths for research into engineering design (as verb) are identified, they must be co-ordinated for internal consistency and plausibility. Design Research tries to clarify design processes and their underlying theories – designing in general, and particular forms, e.g. design engineering. Theories are a basis for deriving theory- based design methods. Design engineering and artistic forms of designing, industrial design, have much in common, but also differences. For an attractive and user-friendly product, its form (observable shape) is important – a task for industrial designers, architects, etc. ‘Conceptualizing’ consists of preliminary sketches, a direct entry to hardware – industrial designers work ‘outside inwards’. For a product that should work and fulfill a purpose, perform a transformation process, its functioning and operation are important – a task for engineering designers. Anticipating and analyzing a capability for operation is a role of the engineering sciences. The outcome of design engineering is a set of manufacturing instructions, and analytical verification of anticipated performance. Design engineering is more constrained than industrial design, but in contrast has available a theory of technical systems and its associated engineering design science, with several abstract models and representations of structures. Engineering designers tend to be primary for technical systems, and their operational and manufacturing processes – they work ‘inside outwards’. Hubka’s theory, and consequently design metho- dology, includes consideration of tasks of a technical system, typical life cycle, duty cycle, classes of properties (and requirements), mode of action, development in time, and other items of interest for engineering design processes. Hubka’s methodology is demonstrated by several case examples.


Author(s):  
Michael J. Safoutin ◽  
Robert P. Smith

Abstract As engineering design is subjected to increasingly formal study, an informal attitude continues to surround the topic of iteration. Today there is no standard definition or typology of iteration, no grounding theory, few metrics, and a poor understanding of its role in the design process. Existing literature provides little guidance in investigating issues of design that might be best approached in terms of iteration. We review contributions of existing literature toward the understanding of iteration in design, develop a classification of design iteration, compare iterative aspects of human and automated design, and draw some conclusions concerning management of iteration and approaches to design automation.


Author(s):  
W. Ernst Eder

Abstract Historic developments, and the current state of the art are surveyed in thought, theory, methods and methodology, and education for and about engineering design. This survey covers two particular and disparate regions, the United Kingdom, and Switzerland, the latter including the activities of an international group centered in Zürich known as WDK — Workshop Design-Konstruktion.


2021 ◽  
Author(s):  
Filippo A. Salustri

Product design engineering is undergoing a transformation from informal and largely experience-based discipline to a science-based domain. Computational intelligence offers models and algorithms that can contribute greatly to design formalization and automation. This paper surveys computational intelligence concepts and approaches applicable to product design engineering. Taxonomy of the surveyed literature is presented according to the generally recognized areas in both product design engineering and computational intelligence. Some research issues that arise from the broad perspective presented in the paper have been signaled but not fully pursued. No survey of such a broad field can be complete, however, the material presented in the paper is a summary of state-of-the-art computational intelligence concepts and approaches in product design engineering. Keywords: Computational intelligence, engineering design, product engineering, decision making, design automation


Author(s):  
W Ernst Eder

Students learning design engineering at times need a good example of procedure for novel design engineering. The systematic heuristic-strategic use of a theory to guide the design process – Engineering Design Science – and the methodical design process followed in this case study is only necessary in limited situations. The full procedure should be learned, such that the student can select appropriate parts for other applications. Creativity is usually characterized by a wide search for solutions, especially those that are innovative. The search can be helped by this systematic and methodical approach. This case example is presented to show application of the recommended method, and the expected scope of the output, with emphasis on the stages of conceptualizing. The case follows a novel design problem of a mechanism to open and close the bow thruster covers for the Caravan Stage Barge.


1998 ◽  
Vol 26 (1) ◽  
pp. 51-64 ◽  
Author(s):  
P. M. Wild ◽  
C. Bradley

North American undergraduate mechanical engineering design education has failed to meet the needs of industry in educating students in effective design philosophies typified by the concurrent engineering design philosophy. Current programmes emphasize traditional engineering analysis courses, leaving little room for truly educating the students in the fundamentals of mechanical engineering design. This paper uses the concurrent engineering design paradigm to design a programme for the education of students in mechanical engineering design. The basics of concurrent engineering design are outlined, the failings of typical design education stated, and an exploration of the required features of a new design curriculum presented.


2013 ◽  
Vol 460 ◽  
pp. 73-80 ◽  
Author(s):  
Jaroslav Šeminský

Paper is focused to the development in designing of technical systems and present methodology approaches. For a long time, engineering design research has been focused on the development of various design theories, methodologies, methods, tools, and procedures. Engineers to more efficiently design artefacts have subsequently used that design methods. However, as the artefacts have grown in complexity, the need for new methods has become obvious. Also, in a nowadays world, increased competition and globalisation require organizations to re-examine traditional product development strategies. While the difficulties in design synthesis are caused by a wide variety of issues, the complicatedness under problem size is so essential that it make procedural design knowledge insufficient to generate superior design solutions.


Sign in / Sign up

Export Citation Format

Share Document