Automated Cam-Mechanism Synthesis and Analysis

Author(s):  
Arnold T. Eventoff

Abstract An automated computer-based method for deriving the shape of machine elements such as cams is described for complex mechanisms. Traditional cam synthesis concentrates on follower motion; the method described here enables complete control of the required output motion. Output motion is defined for any constant or variable camshaft velocity. The process is not limited by the degrees of freedom, follower shape, follower suspension, or complexity of the mechanism linking followers to output points. The method includes a velocity analysis to predict cam shape, pressure angle, and relative velocity of the follower with respect to the cam. This analysis allows immediate visual inspection and further dynamic and wear analyses. Cam-follower contact stress is readily calculated for an entire cycle of motion during the synthesis process. An example consisting of a five-bar linkage displaced by three cams is synthesized using the methodology. The general method described facilitates development of mechanisms previously not feasible using conventional methods. Servomotor command displacement profiles required for complex systems can also be derived using this method.

1988 ◽  
Vol 110 (4) ◽  
pp. 414-422 ◽  
Author(s):  
S. Krishnamurty ◽  
D. A. Turcic

In most mechanism systems, there exists more than one mode of assembly or configuration, of the mechanism for a given set of input conditions. During the synthesis process, branching occurs when the mechanism changes from one configuration to another. Branching in mechanisms renders them unsuitable because they have to be disassembled and reassembled in order for them to correctly perform the design tasks. In this paper, a comprehensive method for the determination and the elimination of branching problems during synthesis in planar multiloop mechanisms with lower kinematic pairs and with multiple modes of assembly is presented. A general method is developed for the identification of all the branching configurations in a given mechanism. Sub-Jacobian matrices are formed for the sets of constraints associated with each potential branching configuration. The signs of the determinant values of the sub-Jacobian matrices are evaluated. By maintaining the signs of the determinant values to be the same, at all times, during the synthesis process, solutions without the effect of branching are achieved for general planar multiloop mechanisms. Implementation of the method in a general mechanism synthesis package is discussed and applications of the method are illustrated by means of examples. This method of determining branching in mechanisms also is ideally suited for implementation in an optimization process to select the appropriate mechanism configuration that best satisfies the design requirements and for maintaining that configuration throughout the entire cycle of operation.


2021 ◽  
Vol 7 (11) ◽  
pp. eabe4270 ◽  
Author(s):  
A. Ben Hayun ◽  
O. Reinhardt ◽  
J. Nemirovsky ◽  
A. Karnieli ◽  
N. Rivera ◽  
...  

It is a long-standing goal to create light with unique quantum properties such as squeezing and entanglement. We propose the generation of quantum light using free-electron interactions, going beyond their already ubiquitous use in generating classical light. This concept is motivated by developments in electron microscopy, which recently demonstrated quantum free-electron interactions with light in photonic cavities. Such electron microscopes provide platforms for shaping quantum states of light through a judicious choice of the input light and electron states. Specifically, we show how electron energy combs implement photon displacement operations, creating displaced-Fock and displaced-squeezed states. We develop the theory for consecutive electron-cavity interactions with a common cavity and show how to generate any target Fock state. Looking forward, exploiting the degrees of freedom of electrons, light, and their interaction may achieve complete control over the quantum state of the generated light, leading to novel light statistics and correlations.


2005 ◽  
Vol 127 (3) ◽  
pp. 415-423 ◽  
Author(s):  
C.-P. Teng ◽  
J. Angeles

Methods of structural optimization have been studied and developed over the last three decades. An important aspect of structural optimization pertains to the condition under which the loads are applied. Most machine structures in operation are subject to loads varying as functions of time. In this paper, a novel approach is proposed to cope with loads whose magnitudes vary within given bounds and with variable directions. The underlying ideas are applied to the structural optimization of the roller-carrying disk of a novel class of cam-follower speed reduction devices termed Speed-o-Cam (SoC). Results obtained in this paper are compared with a current prototype and with an intermediate design in which the dimensions of the roller pins are optimized. Combined with the optimum dimension of the roller pins, our structural-optimization results lead to an improvement of almost twice the stiffness with a mass reduction of 40% of the original prototype.


Author(s):  
Joseph Pegna

Abstract In the quest for ever finer levels of technology integration, mechanical linkages reach their precision limits at about 5micrometers per meter of workspace. Beyond this physical limit, all six dimensional degrees of freedom need to be precisely ascertained to account for mechanical imperfections. This paper substantiates Wu’s vision of “precision machines without precision machinery.” A formulation and statistical characterization of position and orientation error propagation in rigid bodies are presented for two extreme models of measurement. It is shown that error distribution is uniquely dependent upon the design of the measurement plan. The theoretical foundations presented were evolved in the course of designing precision machinery. Other potential applications include: fixture design, metrology, and geometric tolerance verification.


1998 ◽  
Vol 5 (4) ◽  
pp. 219-240 ◽  
Author(s):  
V. Goncharov ◽  
V. Pavlov

Abstract. This paper presents developments of the Harniltonian Approach to problems of fluid dynamics, and also considers some specific applications of the general method to hydrodynamical models. Nonlinear gauge transformations are found to result in a reduction to a minimum number of degrees of freedom, i.e. the number of pairs of canonically conjugated variables used in a given hydrodynamical system. It is shown that any conservative hydrodynamic model with additional fields which are in involution may be always reduced to the canonical Hamiltonian system with three degrees of freedom only. These gauge transformations are associated with the law of helicity conservation. Constraints imposed on the corresponding Clebsch representation are determined for some particular cases, such as, for example. when fluid motions develop in the absence of helicity. For a long time the process of the introduction of canonical variables into hydrodynamics has remained more of an intuitive foresight than a logical finding. The special attention is allocated to the problem of the elaboration of the corresponding regular procedure. The Harniltonian Approach is applied to geophysical models including incompressible (3D and 2D) fluid motion models in curvilinear and lagrangian coordinates. The problems of the canonical description of the Rossby waves on a rotating sphere and of the evolution of a system consisting of N singular vortices are investigated.


1993 ◽  
Vol 67 (3) ◽  
pp. 475-486 ◽  
Author(s):  
Evan Fishbein ◽  
R. Timothy Patterson

The advent of readily available computer-based clustering packages has created some controversy in the micropaleontological community concerning the use and interpretation of computer-based biofacies discrimination. This is because dramatically different results can be obtained depending on methodology. The analysis of various clustering techniques reveals that, in most instances, no statistical hypothesis is contained in the clustering model and no basis exists for accepting one biofacies partitioning over another. Furthermore, most techniques do not consider standard error in species abundances and generate results that are not statistically relevant. When many rare species are present, statistically insignificant differences in rare species can accumulate and overshadow the significant differences in the major species, leading to biofacies containing members having little in common.A statistically based “error-weighted maximum likelihood” (EWML) clustering method is described that determines biofacies by assuming that samples from a common biofacies are normally distributed. Species variability is weighted to be inversely proportional to measurement uncertainty. The method has been applied to samples collected from the Fraser River Delta marsh and shows that five distinct biofacies can be resolved in the data. Similar results were obtained from readily available packages when the data set was preprocessed to reduce the number of degrees of freedom. Based on the sample results from the new algorithm, and on tests using a representative micropaleontological data set, a more conventional iterative processing method is recommended. This method, although not statistical in nature, produces similar results to EWML (not commercially available yet) with readily available analysis packages. Finally, some of the more common clustering techniques are discussed and strategies for their proper utilization are recommended.


Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1977 ◽  
Author(s):  
Ndue Kanari ◽  
Etleva Ostrosi ◽  
Cécile Diliberto ◽  
Inna Filippova ◽  
Seit Shallari ◽  
...  

The investigation presented here features the design of a cleaner and greener chemical process for the conversion of industrial wastes into super-oxidizing materials. The waste of interest is the iron sulfate heptahydrate (FeSO4·7H2O) mainly generated through the sulfate route used for titanium dioxide industrial production. The products of this transformation process are alkali ferrates (A2FeO4, A = Na, K) containing iron in its hexavalent state and considered as powerful oxidants characterized by properties useful for cleaning waters, wastewaters, and industrial effluents. The proposed process includes two steps: (i) The first step consisting of the pre-mixing of two solids (AOH with FeSO4·xH2O) in a rotary reactor allowing the coating of iron sulfate in the alkali hydroxides through solid–solid reactions; and (ii) the second step involves the synthesis of alkali ferrates in a fluidized bed by oxidation of the single solid obtained in the first step in diluted chlorine. The chemical synthesis of alkali ferrates can be carried out within a timeframe of a few minutes. The usage of a fluidized bed enhanced the energy and mass transfer allowing a quasi-complete control of the ferrate synthesis process. The alkali ferrate synthesis process described here possesses many characteristics aligned with the principles of the “green chemistry”.


The new quantum theory, based on the assumption that the dynamical variables do not obey the commutative law of multiplication, has by now been developed sufficiently to form a fairly complete theory of dynamics. One can treat mathematically the problem of any dynamical system composed of a number of particles with instantaneous forces acting between them, provided it is describable by a Hamiltonian function, and one can interpret the mathematics physically by a quite definite general method. On the other hand, hardly anything has been done up to the present on quantum electrodynamics. The questions of the correct treatment of a system in which the forces are propagated with the velocity of light instead of instantaneously, of the production of an electromagnetic field by a moving electron, and of the reaction of this field on the electron have not yet been touched. In addition, there is a serious difficulty in making the theory satisfy all the requirements of the restricted principle of relativity, since a Hamiltonian function can no longer be used. This relativity question is, of course, connected with the previous ones, and it will be impossible to answer any one question completely without at the same time answering them all. However, it appears to be possible to build up a fairly satisfactory theory of the emission of radiation and of the reaction of the radiation field on the emitting system on the basis of a kinematics and dynamics which are not strictly relativistic. This is the main object of the present paper. The theory is noil-relativistic only on account of the time being counted throughout as a c-number, instead of being treated symmetrically with the space co-ordinates. The relativity variation of mass with velocity is taken into account without difficulty. The underlying ideas of the theory are very simple. Consider an atom interacting with a field of radiation, which we may suppose for definiteness to be confined in an enclosure so as to have only a discrete set of degrees of freedom. Resolving the radiation into its Fourier components, we can consider the energy and phase of each of the components to be dynamical variables describing the radiation field. Thus if E r is the energy of a component labelled r and θ r is the corresponding phase (defined as the time since the wave was in a standard phase), we can suppose each E r and θ r to form a pair of canonically conjugate variables. In the absence of any interaction between the field and the atom, the whole system of field plus atom will be describable by the Hamiltonian H ═ Σ r E r + H o equal to the total energy, H o being the Hamiltonian for the atom alone, since the variables E r , θ r obviously satisfy their canonical equations of motion E r ═ — ∂H/∂θ r ═ 0, θ r ═ ∂H/∂E r ═ 1.


2012 ◽  
Vol 452-453 ◽  
pp. 142-146
Author(s):  
Ying Xing Xie

Through the Pro/E software, build straight moving disc cam follower motion equation of the curve, establish the cam modeling, and assemble to make the cam work simulation, revise cam outside contour profile equation, so as to improve the design of cam mechanism.


Author(s):  
Songhui Nie ◽  
Hongzhao Liu ◽  
Aihong Qiu

Sketching of mechanisms identified during the type synthesis process constitutes an important link with the subsequent dimensional synthesis process in the systematic design of mechanisms. Based on the independent loops, a simple and comprehensive method for automatically sketching every type of kinematic chain regardless of the number of links and degrees of freedom is proposed. In the method, a maximal feasible outer-loop is derived by the independent loops addition or subtraction such that all the independent loops become its non-crossing inner loops. During automatic sketching of mechanisms process, the joints of kinematic chain are located on vertices of concentric inscribed regular polygon by outer lane to inner lane in terms of the outer loop and the inner loops. The development and application of this algorithm based on the outer loop and the inner loops relationships are demonstrated with the aid of several mechanism examples.


Sign in / Sign up

Export Citation Format

Share Document