Design Optimization of Aircraft Engine-Mount Systems

Author(s):  
Hashem Ashrafiuon

Abstract Design optimization of aircraft engine-mount systems for vibration isolation is presented. The engine is modeled as a rigid body connected to a flexible base representing the nacelle. The base is modeled with mass and stiffness matrices and structural damping using finite element modeling. The mounts are modeled as three-dimensional springs with hysteresis damping. The objective is to select the stiffness coefficients and orientation angles of the individual mounts to minimize the transmitted forces from the engine to the base. Meanwhile, the mounts have to be stiff enough not allowing engine deflection to exceed its limits under static and low frequency loadings. It is shown that with an optimal system the transmitted forces may be reduced significantly particularly when mount orientation angles are also treated as design variables. The optimization problems are solved using a Constraint Variable Metric approach. The closed form derivatives of the engine vibrational amplitudes with respect to design variables are derived in order to achieve a more effective optimization search technique.

1993 ◽  
Vol 115 (4) ◽  
pp. 463-467 ◽  
Author(s):  
H. Ashrafiuon

Design optimization of aircraft engine-mount systems for vibration isolation is presented. The engine is modeled as a rigid body connected to a flexible base representing the nacelle. The base (nacelle) is modeled with mass and stiffness matrices and structural damping using finite element modeling. The mounts are modeled as three-dimensional springs with hysteresis damping. The objective is to select the stiffness coefficients and orientation angles of the individual mounts in order to minimize the transmitted forces from the engine to the nacelle. Meanwhile, the mounts have to be stiff enough not to allow the engine deflection to exceed its limits under static and low frequency loadings. It is shown that with an optimal system the transmitted forces may be reduced significantly particularly when orientation angles are also treated as design variables. The optimization problems are solved using a constraint variable metric approach. The closed form derivatives of the engine vibrational amplitudes with respect to design variables are derived in order to determine the objective function gradients and consequently a more effective optimization search technique.


Author(s):  
Sudhir Kaul ◽  
Anoop K. Dhingra ◽  
Timothy G. Hunter

This paper presents a comprehensive model to capture the dynamics of a motorcycle system in order to evaluate the quality of vibration isolation. The two main structural components in the motorcycle assembly - the frame and the swing-arm - are modeled using reduced order finite element models; the power-train assembly is modeled as a six degree-of-freedom (DOF) rigid body connected to the frame through the engine mounts and to the swing-arm through a shaft assembly. The engine mounts are modeled as tri-axial spring-damper systems. Models of the front-end assembly as well as front and rear tires are also included in the overall model. The complete vehicle model is used to solve the engine mount optimization problem so as to minimize the total force transmitted to the frame while meeting packaging and other side constraints. The mount system parameters - stiffness, position and orientation vectors - are used as design variables for the optimization problem. The imposed loads include forces and moments due to engine imbalance as well as loads transmitted due to irregularities in the road surface through the tire patch.


2014 ◽  
Vol 984-985 ◽  
pp. 419-424
Author(s):  
P. Sabarinath ◽  
M.R. Thansekhar ◽  
R. Saravanan

Arriving optimal solutions is one of the important tasks in engineering design. Many real-world design optimization problems involve multiple conflicting objectives. The design variables are of continuous or discrete in nature. In general, for solving Multi Objective Optimization methods weight method is preferred. In this method, all the objective functions are converted into a single objective function by assigning suitable weights to each objective functions. The main drawback lies in the selection of proper weights. Recently, evolutionary algorithms are used to find the nondominated optimal solutions called as Pareto optimal front in a single run. In recent years, Non-dominated Sorting Genetic Algorithm II (NSGA-II) finds increasing applications in solving multi objective problems comprising of conflicting objectives because of low computational requirements, elitism and parameter-less sharing approach. In this work, we propose a methodology which integrates NSGA-II and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) for solving a two bar truss problem. NSGA-II searches for the Pareto set where two bar truss is evaluated in terms of minimizing the weight of the truss and minimizing the total displacement of the joint under the given load. Subsequently, TOPSIS selects the best compromise solution.


Author(s):  
Chan-Sol Ahn ◽  
Kwang-Yong Kim

Design optimization of a transonic compressor rotor (NASA rotor 37) using the response surface method and three-dimensional Navier-Stokes analysis has been carried out in this work. The Baldwin-Lomax turbulence model was used in the flow analysis. Three design variables were selected to optimize the stacking line of the blade. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, adiabatic efficiency was successfully improved. It was found that the optimization process provides reliable design of a turbomachinery blade with reasonable computing time.


Author(s):  
Narasimha R. Nagaiah ◽  
Christopher D. Geiger

The design and development is a complex, repetitive, and more often difficult task, as design tasks comprising of restraining and conflicting relationships among design variables with more than one design objectives. Conventional methods for solving more than one objective optimization problems is to build one composite function by scalarizing the multiple objective functions into a single objective function with one solution. But, the disadvantages of conventional methods inspired scientists and engineers to look for different methods that result in more than one design solutions, also known as Pareto optimal solutions instead of one single solution. Furthermore, these methods not only involved in the optimization of more than one objectives concurrently but also optimize the objectives which are conflicting in nature, where optimizing one or more objective affects the outcome of other objectives negatively. This study demonstrates a nature-based and bio-inspired evolutionary simulation method that addresses the disadvantages of current methods in the application of design optimization. As an example, in this research, we chose to optimize the periodic segment of the cooling passage of an industrial gas turbine blade comprising of ribs (also known as turbulators) to enhance the cooling effectiveness. The outlined design optimization method provides a set of tradeoff designs to pick from depending on designer requirements.


2005 ◽  
Vol 127 (1) ◽  
pp. 93-99 ◽  
Author(s):  
Jun-Hwa Lee ◽  
Kwang-Joon Kim

For an efficient design of hydraulic mounts, it is most important to have a good mathematical model available, which must be simple yet capable of representing dynamic characteristics of the hydraulic mounts accurately. Under high amplitude excitations in the low-frequency range, the hydraulic mounts show strongly frequency-dependent stiffness and damping characteristics, which are related with so-called inertia track dynamics. Since nonlinear damping models based on fluid mechanics are typically used to predict the dynamic characteristics of the hydraulic mounts, relations between various design variables, such as geometry of the inertia track, and resultant stiffness and damping characteristics are understood only by tedious numerical computations. In this paper, the use of an equivalent viscous damping model—derived from a nonlinear model and represented in terms of design variables in an explicit manner—is proposed and, based on the equivalent linear model, are presented simple as well as very useful formulas for an efficient design of the hydraulic mounts.


2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Tapabrata Ray ◽  
Md Asafuddoula ◽  
Hemant Kumar Singh ◽  
Khairul Alam

In order to be practical, solutions of engineering design optimization problems must be robust, i.e., competent and reliable in the face of uncertainties. While such uncertainties can emerge from a number of sources (imprecise variable values, errors in performance estimates, varying environmental conditions, etc.), this study focuses on problems where uncertainties emanate from the design variables. While approaches to identify robust optimal solutions of single and multi-objective optimization problems have been proposed in the past, we introduce a practical approach that is capable of solving robust optimization problems involving many objectives building on authors’ previous work. Two formulations of robustness have been considered in this paper, (a) feasibility robustness (FR), i.e., robustness against design failure and (b) feasibility and performance robustness (FPR), i.e., robustness against design failure and variation in performance. In order to solve such formulations, a decomposition based evolutionary algorithm (DBEA) relying on a generational model is proposed in this study. The algorithm is capable of identifying a set of uniformly distributed nondominated solutions with different sigma levels (feasibility and performance) simultaneously in a single run. Computational benefits offered by using polynomial chaos (PC) in conjunction with Latin hypercube sampling (LHS) for estimating expected mean and variance of the objective/constraint functions has also been studied in this paper. Last, the idea of redesign for robustness has been explored, wherein selective component(s) of an existing design are altered to improve its robustness. The performance of the strategies have been illustrated using two practical design optimization problems, namely, vehicle crash-worthiness optimization problem (VCOP) and a general aviation aircraft (GAA) product family design problem.


2019 ◽  
Vol 142 (4) ◽  
Author(s):  
Leandro Luis Corso ◽  
Herbert Martins Gomes ◽  
Leandro de Freitas Spinelli ◽  
Crisley Dossin Zanrosso ◽  
Rogério José Marczak ◽  
...  

Abstract This study proposes a numerical methodology to minimize the bone mass loss in a femur with a total hip arthroplasty procedure, considering uncertainties in the material parameters and using a reliability-based design optimization (RBDO) procedure. A genetic algorithm (GA) is applied for optimization, and a three-dimensional finite element (FE) model associated with the bone remodeling procedure is proposed and described to account for the internal and external femoral bone behavior. An example of a femoral prosthesis design is presented as a basis for discussion of the proposed methodologies, and the corresponding reliability level is evaluated. Constraints on the strength of all materials and target reliability levels are inputs to the optimization model. The main prosthesis dimensions and Young modulus are the design variables. The proposed methodology is compared with a well-known deterministic optimization (DO) procedure and the results show that it is important to consider the uncertainties in this kind of problem since in this case, the a posteriori reliability may be low.


Author(s):  
Ciro A. Soto ◽  
Alejandro R. Diaz

Abstract A study of basic and simple models for topology design optimization in crash events is presented. A 1D collinear and a 2D truss lattice models were implemented and used to solve a set of problems to design the topology of structural members of vehicles under frontal crash. Both design models explore several optimization formulations as well as possible design variables to address the fundamental issues in crashworthiness design, namely, minimization of accelerations while controlling or reducing deformations. Results show the viability of these simple models to solve structural topology optimization problems for crashworthiness.


Author(s):  
C-S Ahn ◽  
K-Y Kim

Design optimization of a transonic compressor rotor (NASA rotor 37) using the response surface method (RSM) and three-dimensional Navier-Stokes analysis has been carried out in this work. The Baldwin—Lomax turbulence model was used in the flow analysis. Three design variables were selected to optimize the stacking line of the blade. Data points for response evaluations were selected by D-optimal i design, and a linear programming method was used to optimize the response surface. As a main result of the optimization, adiabatic efficiency was successfully improved. It was found that the optimization process provides reliable design of a turbomachinery blade with reasonable computing time.


Sign in / Sign up

Export Citation Format

Share Document