Multi Objective Design Optimization of Two Bar Truss Using NSGA II and TOPSIS

2014 ◽  
Vol 984-985 ◽  
pp. 419-424
Author(s):  
P. Sabarinath ◽  
M.R. Thansekhar ◽  
R. Saravanan

Arriving optimal solutions is one of the important tasks in engineering design. Many real-world design optimization problems involve multiple conflicting objectives. The design variables are of continuous or discrete in nature. In general, for solving Multi Objective Optimization methods weight method is preferred. In this method, all the objective functions are converted into a single objective function by assigning suitable weights to each objective functions. The main drawback lies in the selection of proper weights. Recently, evolutionary algorithms are used to find the nondominated optimal solutions called as Pareto optimal front in a single run. In recent years, Non-dominated Sorting Genetic Algorithm II (NSGA-II) finds increasing applications in solving multi objective problems comprising of conflicting objectives because of low computational requirements, elitism and parameter-less sharing approach. In this work, we propose a methodology which integrates NSGA-II and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) for solving a two bar truss problem. NSGA-II searches for the Pareto set where two bar truss is evaluated in terms of minimizing the weight of the truss and minimizing the total displacement of the joint under the given load. Subsequently, TOPSIS selects the best compromise solution.

Author(s):  
Weijun Wang ◽  
Stéphane Caro ◽  
Fouad Bennis

In the presence of multiple optimal solutions in multi-modal optimization problems and in multi-objective optimization problems, the designer may be interested in the robustness of those solutions to make a decision. Here, the robustness is related to the sensitivity of the performance functions to uncertainties. The uncertainty sources include the uncertainties in the design variables, in the design environment parameters, in the model of objective functions and in the designer’s preference. There exist many robustness indices in the literature that deal with small variations in the design variables and design environment parameters, but few robustness indices consider large variations. In this paper, a new robustness index is introduced to deal with large variations in the design environment parameters. The proposed index is bounded between zero and one, and measures the probability of a solution to be optimal with respect to the values of the design environment parameters. The larger the robustness index, the more robust the solution with regard to large variations in the design environment parameters. Finally, two illustrative examples are given to highlight the contributions of this paper.


2005 ◽  
Vol 13 (4) ◽  
pp. 501-525 ◽  
Author(s):  
Kalyanmoy Deb ◽  
Manikanth Mohan ◽  
Shikhar Mishra

Since the suggestion of a computing procedure of multiple Pareto-optimal solutions in multi-objective optimization problems in the early Nineties, researchers have been on the look out for a procedure which is computationally fast and simultaneously capable of finding a well-converged and well-distributed set of solutions. Most multi-objective evolutionary algorithms (MOEAs) developed in the past decade are either good for achieving a well-distributed solutions at the expense of a large computational effort or computationally fast at the expense of achieving a not-so-good distribution of solutions. For example, although the Strength Pareto Evolutionary Algorithm or SPEA (Zitzler and Thiele, 1999) produces a much better distribution compared to the elitist non-dominated sorting GA or NSGA-II (Deb et al., 2002a), the computational time needed to run SPEA is much greater. In this paper, we evaluate a recently-proposed steady-state MOEA (Deb et al., 2003) which was developed based on the ε-dominance concept introduced earlier (Laumanns et al., 2002) and using efficient parent and archive update strategies for achieving a well-distributed and well-converged set of solutions quickly. Based on an extensive comparative study with four other state-of-the-art MOEAs on a number of two, three, and four objective test problems, it is observed that the steady-state MOEA is a good compromise in terms of convergence near to the Pareto-optimal front, diversity of solutions, and computational time. Moreover, the ε-MOEA is a step closer towards making MOEAs pragmatic, particularly allowing a decision-maker to control the achievable accuracy in the obtained Pareto-optimal solutions.


2016 ◽  
Vol 138 (9) ◽  
Author(s):  
Kalyan Shankar Bhattacharjee ◽  
Hemant Kumar Singh ◽  
Tapabrata Ray

In engineering design optimization, evaluation of a single solution (design) often requires running one or more computationally expensive simulations. Surrogate assisted optimization (SAO) approaches have long been used for solving such problems, in which approximations/surrogates are used in lieu of computationally expensive simulations during the course of search. Existing SAO approaches often use the same type of approximation model to represent all objectives and constraints in all regions of the search space. The selection of a type of surrogate model over another is nontrivial and an a priori choice limits flexibility in representation. In this paper, we introduce a multi-objective evolutionary algorithm (EA) with multiple adaptive spatially distributed surrogates. Instead of a single global surrogate, local surrogates of multiple types are constructed in the neighborhood of each offspring solution and a multi-objective search is conducted using the best surrogate for each objective and constraint function. The proposed approach offers flexibility of representation by capitalizing on the benefits offered by various types of surrogates in different regions of the search space. The approach is also immune to illvalidation since approximated and truly evaluated solutions are not ranked together. The performance of the proposed surrogate assisted multi-objective algorithm (SAMO) is compared with baseline nondominated sorting genetic algorithm II (NSGA-II) and NSGA-II embedded with global and local surrogates of various types. The performance of the proposed approach is quantitatively assessed using several engineering design optimization problems. The numerical experiments demonstrate competence and consistency of SAMO.


Author(s):  
Xiaojun Liu ◽  
Dongye Sun ◽  
Datong Qin ◽  
Junlong Liu

The power-cycling hydrodynamic mechanical transmissions have the advantages of continuously adjustable speed ratio and high efficiency compared with the traditional automatic transmissions, so they may be a good substitute for the prior art. For off-highway vehicles which frequently work in low speed and confront great resistance, the zero-speed-ratio torque ratio (TR) of the power-cycling hydrodynamic mechanical transmissions represents the power performance of the vehicles. Furthermore, the complexity of the transmissions is an indispensable consideration for industrial designers. The radial and axial dimensions of the power-cycling hydrodynamic mechanical transmissions are determined by the effective diameter of the torque converter’s circuit and the number of transmissions gears, respectively. In order to optimize the zero-speed-ratio TR and the complexity of the power-cycling hydrodynamic mechanical transmissions, a design methodology is proposed. Considering that there is no explicit mathematical relationship between the design variables and the multi-objective functions, the parametric design and numerical simulation for the torque converter are carried out. The intrinsic mapping between the design variables and the multi-objective functions is fitted by the radial basis function neural network. On this basis, the fast and elitist non-dominated sorting genetic algorithm (NSGA-ΙΙ) is used to solve the multi-objective optimization problem. The numerical simulation for one group of solution selected from the Pareto optimal solutions is conducted. The simulation results indicate that the design methodology proposed in this study is effective. The optimal results show that the zero-speed-ratio TR of the power-cycling hydrodynamic mechanical transmissions is heavily influenced by the radial and axial space of such transmissions. The design optimization helps to find the optimal solutions for the power-cycling HMTs, which are superior to the traditional automatic transmissions and match well the prime mover.


2016 ◽  
Vol 8 (4) ◽  
pp. 157-164 ◽  
Author(s):  
Mehdi Babaei ◽  
Masoud Mollayi

In recent decades, the use of genetic algorithm (GA) for optimization of structures has been highly attractive in the study of concrete and steel structures aiming at weight optimization. However, it has been challenging for multi-objective optimization to determine the trade-off between objective functions and to obtain the Pareto-front for reinforced concrete (RC) and steel structures. Among different methods introduced for multi-objective optimization based on genetic algorithms, Non-Dominated Sorting Genetic Algorithm II (NSGA II) is one of the most popular algorithms. In this paper, multi-objective optimization of RC moment resisting frame structures considering two objective functions of cost and displacement are introduced and examined. Three design models are optimized using the NSGA-II algorithm. Evaluation of optimal solutions and the algorithm process are discussed in details. Sections of beams and columns are considered as design variables and the specifications of the American Concrete Institute (ACI) are employed as the design constraints. Pareto-fronts for the objective space have been obtained for RC frame models of four, eight and twelve floors. The results indicate smooth Pareto-fronts and prove the speed and accuracy of the method.


2010 ◽  
Vol 34 (3-4) ◽  
pp. 463-474 ◽  
Author(s):  
Abolfazl Khalkhali ◽  
Mohamadhosein Sadafi ◽  
Javad Rezapour ◽  
Hamed Safikhani

Net energy stored (Q net) and the discharge time of Phase Change Material (t PCM) in a solar system, are important conflicting objectives to be optimized simultaneously. In the present paper, multi-objective genetic algorithms (GAs) are used for Pareto approach optimization of a solar system using modified NSGA II algorithms. The competing objectives are Q net and t PCM and design variables are some geometrical parameters of solar system. It is shown that some interesting and important relationships as useful optimal design principles involved in the performance of solar system can be discovered. These important results can be used for better design of a solar system.


2010 ◽  
Vol 132 (7) ◽  
Author(s):  
Zeeshan Omer Khokhar ◽  
Hengameh Vahabzadeh ◽  
Amirreza Ziai ◽  
G. Gary Wang ◽  
Carlo Menon

Practical design optimization problems require use of computationally expensive “black-box” functions. The Pareto set pursuing (PSP) method, for solving multi-objective optimization problems with expensive black-box functions, was originally developed for continuous variables. In this paper, modifications are made to allow solution of problems with mixed continuous-discrete variables. A performance comparison strategy for nongradient-based multi-objective algorithms is discussed based on algorithm efficiency, robustness, and closeness to the true Pareto front with a limited number of function evaluations. Results using several methods, along with the modified PSP, are given for a suite of benchmark problems and two engineering design ones. The modified PSP is found to be competitive when the total number of function evaluations is limited, but faces an increased computational challenge when the number of design variables increases.


2020 ◽  
Vol 9 (4) ◽  
pp. 236
Author(s):  
Xiaolan Li ◽  
Bingbo Gao ◽  
Zhongke Bai ◽  
Yuchun Pan ◽  
Yunbing Gao

Complex geographical spatial sampling usually encounters various multi-objective optimization problems, for which effective multi-objective optimization algorithms are much needed to help advance the field. To improve the computational efficiency of the multi-objective optimization process, the archived multi-objective simulated annealing (AMOSA)-II method is proposed as an improved parallelized multi-objective optimization method for complex geographical spatial sampling. Based on the AMOSA method, multiple Markov chains are used to extend the traditional single Markov chain; multi-core parallelization technology is employed based on multi-Markov chains. The tabu-archive constraint is designed to avoid repeated searches for optimal solutions. Two cases were investigated: one with six typical traditional test problems, and the other for soil spatial sampling optimization applications. Six performance indices of the two cases were analyzed—computational time, convergence, purity, spacing, min-spacing and displacement. The results revealed that AMOSA-II performed better which was more effective in obtaining preferable optimal solutions compared with AMOSA and NSGA-II. AMOSA-II can be treated as a feasible means to apply in other complex geographical spatial sampling optimizations.


Author(s):  
Khodakaram Salimifard ◽  
Jingpeng Li ◽  
Davood Mohammadi ◽  
Reza Moghdani

AbstractParallel machine scheduling is one of the most common studied problems in recent years, however, this classic optimization problem has to achieve two conflicting objectives, i.e. minimizing the total tardiness and minimizing the total wastes, if the scheduling is done in the context of plastic injection industry where jobs are splitting and molds are important constraints. This paper proposes a mathematical model for scheduling parallel machines with splitting jobs and resource constraints. Two minimization objectives - the total tardiness and the number of waste - are considered, simultaneously. The obtained model is a bi-objective integer linear programming model that is shown to be of NP-hard class optimization problems. In this paper, a novel Multi-Objective Volleyball Premier League (MOVPL) algorithm is presented for solving the aforementioned problem. This algorithm uses the crowding distance concept used in NSGA-II as an extension of the Volleyball Premier League (VPL) that we recently introduced. Furthermore, the results are compared with six multi-objective metaheuristic algorithms of MOPSO, NSGA-II, MOGWO, MOALO, MOEA/D, and SPEA2. Using five standard metrics and ten test problems, the performance of the Pareto-based algorithms was investigated. The results demonstrate that in general, the proposed algorithm has supremacy than the other four algorithms.


Sign in / Sign up

Export Citation Format

Share Document