An Advisory Conceptual Design Tool for Mechanical Transmission Systems

Author(s):  
C. P. Huang ◽  
F. W. Liou ◽  
J. J. Malyamakkil ◽  
W. F. Lu

Abstract This paper presents an advisory conceptual design tool for mechanical transmission systems. Space consideration was taken into account during the design process. A prototype function tree was built in the form of knowledge-based system to transfer a designer’s idea into a set of mechanical components. An advisory expert system was also developed to help a designer in decision making. As an example, a packaging machine is designed using the developed system.

1990 ◽  
Vol 29 (03) ◽  
pp. 193-199 ◽  
Author(s):  
G. Schwarz ◽  
R. Grims ◽  
E. Rumpl ◽  
G. Rom ◽  
G. Pfurtscheller ◽  
...  

AbstractBRAINDEX (Brain-Death Expert System) is an interactive, knowledge-based expert system offering support to physicians in decision making concerning brain death. The physician is given the possibility of communicating in almost natural language and, therefore, in terms with which he is familiar. This updated version of the system is implemented on an IBM-PC/AT with the expert system shell PC-PLUS and consists of about 430 rules. The determination of brain death is realized with backward chaining and for the optional coma-scaling a forward-chaining mechanism is used.


1990 ◽  
Vol 4 (4) ◽  
pp. 315-331 ◽  
Author(s):  
B. Huber ◽  
J.P. Nyrop ◽  
W. Wolf ◽  
H. Reissig ◽  
A. Agnello ◽  
...  

Author(s):  
S. Akagi ◽  
T. Tanaka ◽  
H. Kubonishi

Abstract A hybrid-type expert system is developed for supporting the initial design process of marine power plants. Firstly, discussion is given generally to understand design process in the view point of applying the AI technique effectively to design. Based on the result of the discussion, a hybrid-type expert CAD system with coupling the AI technique and the numerical optimization method is developed. In the system, the design knowledge is represented in the production rules, and the data of machineries consisting the plant are described by the frame-type representation. Through the system execution, it is ascertained that the system is effective not only as the design tool assisting designers but also as the tool instructing inexperienced designers.


2014 ◽  
Vol 21 (2) ◽  
pp. 115-128 ◽  
Author(s):  
Sheila Pontis

Conceptual design is often overlooked and underestimated by information designers who tend to be more focused on implementation and concerned with aesthetic qualities. Consequently, there is a lack of thorough thinking and understanding during the conceptual part of the design process that results in a recurrent development of unintelligible diagrams in information design practice. Bringing awareness to conceptual design can help designers realize its function and importance for the development of effective diagrams. To address this situation, this paper proposes the adoption in professional practice of a conceptual design tool with a guided approach, e.g., MapCI Cards. Working with this approach may aid information designers in the preparation of diagrams by guiding conceptual design tasks: understanding the diagram purpose and intended-audience, analyzing and simplifying information sources, identifying subject areas and information types, and defining their organization into a hierarchical structure. We describe this type of approach and discuss its usefulness for information designers, explaining how it could support their conceptual design decision-making. Then, we present scenarios in which working with the approach could be beneficial, followed by recommendations to use this approach in professional practice.


2012 ◽  
Vol 271-272 ◽  
pp. 974-980 ◽  
Author(s):  
Pai Zheng ◽  
Víctor Hugo Torres ◽  
José Ríos ◽  
Gang Zhao

The design process comprises the Conceptual Phase, the Embodiment Phase and the Detail Design Phase in which commercial PLM/CAD systems mainly support the latter ones. This situation causes the discontinuity in the overall design information flow: Customer Needs (CNs) - Functional Requirements (FRs) – Design Parameters (DPs) – Key Characteristics (KCs) – Geometric Parameters (GPs). There is also a lack of knowledge reuse in routine design process, resulting in large cost-waste of the overall design process. Aiming to enhance the continuity of the design information flow and facilitate the knowledge reuse, this paper makes use of a knowledge-based framework to integrate conceptual design tools: Quality Function Deployment (QFD), Axiomatic Design (AD), Failure Mode and Effects Analysis (FMEA) and the MOKA methodology into CATIA v5 system. A knowledge-based application (KBA) on the large aircraft y-bolt component design is presented as a case study to validate the proposed framework. The result shows how this novel integrated framework and KBA system could benefit designers in a practical way.


Author(s):  
El-Sayed Aziz ◽  
C. Chassapis

Product development is a process with complicated procedures, which incorporate many aspects of knowledge, experience and teamwork. Specifically, mechanical system design requires an iterative process to determine the desired component design parameters that would satisfy kinematic, performance and manufacturability requirements, which would result in an efficient and reliable operation of speed reduction units. This article describes an approach towards the development of intelligent design support environments for mechanical transmission systems, along with implementation details of a distributed knowledge-based gearing design and manufacturing system that is deployed over the Internet. The system embodies the various tasks of the design process, with modules that address: performance evaluation, process optimization, manufacturability analysis, and provides reasoning and decision-making capabilities for reducing the time between gear tooth creation, detailed design and final production. This methodology is highly desirable in that it is able to simulate real working conditions, evaluate and optimize the design effectively, prevent designers from time-consuming iterations and reduce long and expensive test phases. In an application example relating to process design of a forged gearing system, once a successful power rating is achieved within the design environment through FEA based techniques, the system automatically feeds input parameters into the manufacturing module which carries out all process design and planning stages. Estimation of the number of preforming stages, generation of detail die drawings, and forging load and energy requirements are calculated based on available material design databases, knowledge-based rules and feature-level calculations. Utilization of the World Wide Web, as a medium for the implementation of gear design and its agile manufacturing over the Internet is also being demonstrated. A combination of HTML, JavaScript, VRML, CGI Script and C++ based procedures is used to bring this capability to users distributed anywhere in the world. With the above developments, the problems of experience and expertise for the designers are overcome and unexpected design iterations that cause wastage of engineering time and effort, are avoided. The environment can be easily enhanced with other types of gearing systems.


Sign in / Sign up

Export Citation Format

Share Document