Active Constrained Layer Damping of Seismic Excitations

Author(s):  
A. Baz ◽  
S. Poh

Abstract This paper aims at demonstrating the feasibility of Active Constrained Layer Dampers (ACLD) as an effective means for damping out seismic-induced vibrations of structures. The ACLD concept is motivated by the destructive effects that seismic excitations have on most of the uncontrolled structures. The effectiveness of the ACLD in enhancing the damping characteristics of conventional visco-elastic dampers is demonstrated experimentally for structures subjected to base excitations. Classical identification methods are used to identify a mathematical model that describes the interaction between the vibrating structures, the ACLD system and the seismic excitation. The model is integrated with a robust Continuous Sliding Mode (CSM) controller to reject the effect of the seismic excitations acting on vibrating structures with uncertain dynamic parameters. In this manner, the ACLD and the CSM algorithm present a simple but yet powerful alternative to classical control methods for rejecting seismic excitations and accommodating wide range of parameter uncertainty. The emphasis, in this paper, is placed on multi-story two-dimensional scaled structures which are provided with diagonal braces of the ACLD. However, the techniques developed can be readily extended to three-dimensional and larger structures.

2002 ◽  
Vol 8 (6) ◽  
pp. 861-876 ◽  
Author(s):  
J. Ro ◽  
A. Baz

The Active Constrained Layer Damping (ACLD) treatment has been used successfully for controlling the vibration of various flexible structures. It provides an effective means for augmenting the simplicity and reliability of passive damping with the low weight and high efficiency of active controls to attain high damping characteristics over broad frequency bands. In this paper, optimal placement strategies of ACLD patches are devised using the modal strain energy (MSE) method. These strategies aim at minimizing the total weight of the damping treatments while satisfying constraints imposed on the modal damping ratios. A finite element model is developed to determine the modal strain energies of plates treated with ACLD. The treatment is then applied to the elements that have highest MSE in order to target specific modes of vibrations. Numerical examples are presented to demonstrate the utility of the devised optimization technique as an effective tool for selecting the optimal locations of the ACLD treatment to achieve desired damping characteristics over a broad frequency band.


1995 ◽  
Vol 117 (B) ◽  
pp. 135-144 ◽  
Author(s):  
A. Baz ◽  
J. Ro

Conventional Passive Constrained Layer Damping (PCLD) treatments with viscoelastic cores are provided with built-in sensing and actuation capabilities to actively control and enhance their vibration damping characteristics. The design parameters and control gains of the resulting Active Constrained Layer Damping (ACLD) treatments are optimally selected, in this paper, for fully-treated beams using rational design procedures. The optimal thickness and shear modulus of the passive visco-elastic core are determined first to maximize the modal damping ratios and minimize the total weight of the damping treatment. The control gains of the ACLD are then selected using optimal control theory to minimize a weighted sum of the vibrational and control energies. The theoretical performance of beams treated with the optimally selected ACLD treatment is determined at different excitation frequencies and operating temperatures. Comparisons are made with the performance of beams treated with optimal PCLD treatments and untreated beams which are controlled only by conventional Active Controllers (AC). The results obtained emphasize the potential of the optimally designed ACLD as an effective means for providing broad-band attenuation capabilities over wide range or operating temperatures as compared to PCLD treatments.


2002 ◽  
Vol 8 (6) ◽  
pp. 833-845 ◽  
Author(s):  
J. Ro ◽  
A. Baz

The Active Constrained Layer Damping (ACLD) treatment has been used successfully for controlling the vibration of various flexible structures. The treatment provides an effective means of augmenting the simplicity and reliability of passive damping with the low weight and high efficiency of active controls to attain high damping characteristics over broad frequency bands. In this study, a self-sensing configuration of the ACLD treatment is utilized to suppress the bending and torsional vibrations of cantilevered plates simultaneously. The treatment considered ensures collocation of the sensors/actuators pairs in order to guarantee stable operation. The theoretical characteristics of the multi-layer treatment are presented in this paper and compared with the experimental performance. Attenuation of the amplitude of vibration of the first bending and torsional modes of more than 96% and 35% are obtained using proportional controller with voltages less than 93 volts. The corresponding attenuation becomes and 90% and 84% when a derivative controller is used with voltage of 82 volt.


1995 ◽  
Vol 117 (B) ◽  
pp. 135-144 ◽  
Author(s):  
A. Baz ◽  
J. Ro

Conventional Passive Constrained Layer Damping (PCLD) treatments with viscoelastic cores are provided with built-in sensing and actuation capabilities to actively control and enhance their vibration damping characteristics. The design parameters and control gains of the resulting Active Constrained Layer Damping (ACLD) treatments are optimally selected, in this paper, for fully-treated beams using rational design procedures. The optimal thickness and shear modulus of the passive visco-elastic core are determined first to maximize the modal damping ratios and minimize the total weight of the damping treatment. The control gains of the ACLD are then selected using optimal control theory to minimize a weighted sum of the vibrational and control energies. The theoretical performance of beams treated with the optimally selected ACLD treatment is determined at different excitation frequencies and operating temperatures. Comparisons are made with the performance of beams treated with optimal PCLD treatments and untreated beams which are controlled only by conventional Active Controllers (AC). The results obtained emphasize the potential of the optimally designed ACLD as an effective means for providing broad-band attenuation capabilities over wide range or operating temperatures as compared to PCLD treatments.


2002 ◽  
Vol 8 (6) ◽  
pp. 877-902 ◽  
Author(s):  
W. Laplante ◽  
T. Chen ◽  
A. Baz ◽  
W. Sheilds

Vibration and sound radiation from fluid-loaded cylindrical shells are controlled using patches of Active Constrained Layer Damping (ACLD). The performance and the enhanced damping characteristics via reduced vibrations and sound radiation in the surrounding fluid is demonstrated both theoretically and experimentally. A prime motivation for this work is the potential wide applications in submarines and torpedoes where acoustic stealth is critical to the effectiveness of missions. A finite element model is also developed to predict the vibration and the acoustic radiation in the surrounding fluid of the ACLD-treated cylinders. The developed model is used to study the effectiveness of the control and placement strategies of the ACLD in controlling the fluid-structure interactions. A water tank is constructed that incorporates test cylinders treated with two ACLD patches placed for targeting specific vibration modes. Using this arrangement, the effectiveness of different control strategies is studied when the submerged cylinders are subjected to internal excitation, and the radiated sound pressure level in the water is observed. Comparisons are made between the experimental results and the theoretical predictions to validate the finite element model.


Sign in / Sign up

Export Citation Format

Share Document