Out-of-Plane Vibrations of a Stepped Euler-Bernoulli Beam Clamped to a Rotating Hub

Author(s):  
S. Naguleswaran

Abstract This paper is concerned with the vibrations of an Euler-Bernoulli stepped cantilever, clamped to a hub rotating at a constant speed. The system parameters are: the speed of rotation of the hub, the position of the step, the ratio of the mass per unit length of the two portions of the beam and the ratio of the flexural rigidity. Analytical solution of the mode shape differential equations for out-of-plane vibrations (normal to the plane of rotation) is developed. The frequency equation is expressed as a 4th order determinant equated to zero. A scheme is presented to derive the natural frequencies. The first three frequencies are tabulated for various combinations of the system parameters. Published results (which were obtained via finite element procedure) are compared with the analytical results.

Author(s):  
D C D Oguamanam ◽  
M Arshad

The free vibration of a flexible manipulator that is carrying a rigid payload at the tip is examined. The centre of mass of the payload may not coincide with the point of attachment to the manipulator. The manipulator is modelled as an Euler-Bernoulli beam and it undergoes both out-of-plane and in-plane elastic flexural deformations in conjunction with torsional deformation. The explicit expression of the characteristic (or frequency) equation is presented and a parametric study is provided.


Author(s):  
Vesna Jaksic ◽  
Vikram Pakrashi ◽  
Alan O’Connor

Damage detection and Structural Health Monitoring (SHM) for bridges employing bridge-vehicle interaction has created considerable interest in recent times. In this regard, a significant amount of work is present on the bridge-vehicle interaction models and on damage models. Surface roughness on bridges is typically used for detailing models and analyses are present relating surface roughness to the dynamic amplification of response of the bridge, the vehicle or to the ride quality. This paper presents the potential of using surface roughness for damage detection of bridge structures through bridge-vehicle interaction. The concept is introduced by considering a single point observation of the interaction of an Euler-Bernoulli beam with a breathing crack traversed by a point load. The breathing crack is treated as a nonlinear system with bilinear stiffness characteristics related to the opening and closing of crack. A uniform degradation of flexural rigidity of an Euler-Bernoulli beam traversed by a point load is also considered in this regard. The surface roughness of the beam is essentially a spatial representation of some spectral definition and is treated as a broadband white noise in this paper. The mean removed residuals of beam response are analyzed to estimate damage extent. Uniform velocity and acceleration conditions of the traversing load are investigated for the appropriateness of use. The detection and calibration of damage is investigated through cumulant based statistical parameters computed on stochastic, normalized responses of the damaged beam due to passages of the load. Possibilities of damage detection and calibration under benchmarked and non-benchmarked cases are discussed. Practicalities behind implementing this concept are also considered.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Hamdi Alper Özyiğit ◽  
Mehmet Yetmez ◽  
Utku Uzun

As there is a gap in literature about out-of-plane vibrations of curved and variable cross-sectioned beams, the aim of this study is to analyze the free out-of-plane vibrations of curved beams which are symmetrically and nonsymmetrically tapered. Out-of-plane free vibration of curved uniform and tapered beams with additional mass is also investigated. Finite element method is used for all analyses. Curvature type is assumed to be circular. For the different boundary conditions, natural frequencies of both symmetrical and unsymmetrical tapered beams are given together with that of uniform tapered beam. Bending, torsional, and rotary inertia effects are considered with respect to no-shear effect. Variations of natural frequencies with additional mass and the mass location are examined. Results are given in tabular form. It is concluded that (i) for the uniform tapered beam there is a good agreement between the results of this study and that of literature and (ii) for the symmetrical curved tapered beam there is also a good agreement between the results of this study and that of a finite element model by using MSC.Marc. Results of out-of-plane free vibration of symmetrically tapered beams for specified boundary conditions are addressed.


2006 ◽  
Vol 20 (4) ◽  
pp. 467-472 ◽  
Author(s):  
Youngjae Shin ◽  
Jonghak Yun ◽  
Kyeongyoun Seong ◽  
Jaeho Kim ◽  
Sunghwang Kang

2020 ◽  
Vol 31 (12) ◽  
pp. 1465-1476
Author(s):  
Mohammad-Ali Maleki-Bigdeli ◽  
Majid Baniassadi ◽  
Kui Wang ◽  
Mostafa Baghani

In this research, the bending of a two-way shape memory polymer beam is examined implementing a one-dimensional phenomenological macroscopic constitutive model into Euler–Bernoulli and von-Karman beam theories. Since bending loading is a fundamental problem in engineering applications, a combination of bending problem and two-way shape memory effect capable of switching between two temporary shapes can be used in different applications, for example, thermally activated sensors and actuators. Shape memory polymers as a branch of soft materials can undergo large deformation. Hence, Euler–Bernoulli beam theory does not apply to the bending of a shape memory polymer beam where moderate rotations may occur. To overcome this limitation, von-Karman beam theory accounting for the mid-plane stretching as well as moderate rotations can be employed. To investigate the difference between the two beam theories, the deflection and rotating angles of a shape memory polymer cantilever beam are analyzed under small and moderate deflections and rotations. A semi-analytical approach is used to inspect Euler–Bernoulli beam theory, while finite-element method is employed to study von-Karman beam theory. In the following, a smart structure is analyzed using a prepared user-defined subroutine, VUMAT, in finite-element package, ABAQUS/EXPLICIT. Utilizing generated user-defined subroutine, smart structures composed of shape memory polymer material can be analyzed under complex loading circumstances through the two-way shape memory effect.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Farhad Mir Hosseini ◽  
Natalie Baddour

The problem of determining the eigenvalues of a vibrational system having multiple lumped attachments has been investigated extensively. However, most of the research conducted in this field focuses on determining the natural frequencies of the combined system assuming that the characteristics of the combined vibrational system are known (forward problem). A problem of great interest from the point of view of engineering design is the ability to impose certain frequencies on the vibrational system or to avoid certain frequencies by modifying the characteristics of the vibrational system (inverse problem). In this paper, a method to impose two natural frequencies on a dynamical system consisting of an Euler-Bernoulli beam and carrying a single mass attachment is evaluated.


2003 ◽  
Vol 9 (11) ◽  
pp. 1221-1229 ◽  
Author(s):  
Ali H Nayfeh ◽  
S.A. Emam ◽  
Sergio Preidikman ◽  
D.T. Mook

We investigate the free vibrations of a flexible beam undergoing an overall two-dimensional motion. The beam is modeled using the Euler-Bernoulli beam theory. An exact solution for the natural frequencies and corresponding mode shapes of the beam is obtained. The model can be extended to beams undergoing three-dimensional motions.


Author(s):  
Said I. Nour ◽  
Mohsen A. Issa

The natural frequencies of vibration of short span bridges used in high-speed rail were investigated. Three different models of increasing complexity were evaluated and their effects on the vibration frequency were compared to the first basic model of simply supported Euler-Bernoulli beam. In the second and third cases, the bridge was modeled as an Euler-Bernoulli and Timoshenko beam supported at its two ends by identical spring elements with an equivalent vertical stiffness to simulate elastomeric bearings and soil foundation. The boundary value problem was solved numerically to extract the bridge eigenfrequencies. In the case of Euler-Bernoulli beam, curve fitting techniques were used to deduce accurate simple empirical formulae to calculate the first six natural frequencies of an elastically supported bridge. In the case of a Timoshenko beam, graphical solutions were proposed to compute the fundamental frequency. Results confirmed that the use of Timoshenko beam theory reduces the natural frequency and the consideration of flexible supports further decreases the natural frequency. In the fourth model, the interaction of the track and the bridge was included. The bridge was modeled as an elastically supported beam and the track was modeled as a spring-damper element with an equivalent vertical stiffness resulting from track components like rail pads, cross-ties and ballast. A parametric study was performed to analyze the effects of the track stiffness on the natural frequencies of the bridge. Graphical solutions were presented to quantify the change of the normalized natural frequencies of the system with the increase in the track modulus. Results indicated that the changes in the track modulus have no significant effects in models with rigid supports. A decrease in the fundamental frequency was noticeable with softer track modulus as the support flexibility increased.


Sign in / Sign up

Export Citation Format

Share Document