Integration of Commercial CAD/CAM System With Custom CAPP Using Orbix Middleware and CORBA Standard

Author(s):  
Fernando Rangel ◽  
Jami J. Shah

This paper discusses the issues of integrating the Computer-Aided Design (CAD) and Computer-Aided Manufacturing (CAM) programs in commercial software. Integration was achieved through implementation of a computer-aided process planning (CAPP) system within the commercial software. The part model was imported into, or designed in, the commercial CAD system. Manufacturing information was then extracted from the part model by the CAPP system using commercial Application Programming Interfacing (API) methods. The CAPP system then uses the extracted information to produce a process plan consistent with the requirements of the commercial CAM module to produce Numerical Control (NC) code. The internal integration was accomplished using commercial API methods that dynamically bind the CAD, CAPP, and CAM into a single continuous application. These APIs are implemented using the Orbix middleware following the CORBA standard. A case study demonstrating the integration is presented. Strengths and weaknesses of integrating the CAD and CAM domains using APIs and middleware are discussed.

Author(s):  
G C Vosniakos ◽  
T Giannakakis

This work discusses issues concerning the implementation of scanning of unknown engineering objects containing just simple (i.e. no freeform) surfaces with touch probes on three-axis computer numerical control (CNC) measuring machines in order to reconstruct their shape in a computer aided design (CAD) system. Several ideas are put forward e.g. scanning along vertical slicing planes adaptive point sampling distances in-process ‘proactive’ segmentation of points into curve sections and probe radius compensation in two directions as well as limited remedy of edge scanning ambiguities. Most of the suggested algorithms are implemented as parametric numerical control (NC) programs on an OKUMA machining centre.


Author(s):  
A Mohole ◽  
P Wright ◽  
C Séquin

A key element in the overall efficiency of a manufacturing enterprise is the compatibility between the features that have been created in a newly designed part, and the capabilities of the downstream manufacturing processes. With this in mind, a process-aware computer aided design (CAD) system called WebCAD has been developed. The system restricts the freedom of the designer in such a way that the designed parts can be manufactured on a three-axis computer numerical control milling machine. This paper discusses the vision of WebCAD and explains the rationale for its development in comparison with commercial CAD/CAM (computer aided design/manufacture) systems. The paper then goes on to describe the implementation issues that enforce the manufacturability rules. Finally, certain design tools are described that aid a user during the design process. Some examples are given of the parts designed and manufactured with WebCAD.


2011 ◽  
Vol 121-126 ◽  
pp. 1316-1320
Author(s):  
Lei Chen ◽  
Ming Ran Deng

Aiming at the problem of process data update and working procedure model, the three-dimension CAPP (Computer Aided Process Planning) based on three-dimension CAD (Computer Aided Design) is proposed. The core of the system is the process model that is used to transfer data between CAPP and CAD system. This system can solve the problem of two-dimension CAPP based on parameter feature modeling of three-dimension CAD and has been applied to some aviation enterprises in china.


Author(s):  
Zahid Faraz ◽  
Syed Waheed ul Haq ◽  
Liaqat Ali ◽  
Khalid Mahmood ◽  
Wasim Akram Tarar ◽  
...  

Metal sheets have the ability to be formed into nonstandard sizes and sections. Displacement-controlled computer numerical control press brakes are used for three-dimensional sheet metal forming. Although the subject of vendor neutral computer-aided technologies (computer-aided design, computer-aided process planning and computer-aided manufacturing) is widely researched for machined parts, research in the field of sheet metal parts is very sparse. Blank development from three-dimensional computer-aided design model depends on the bending tools geometry and metal sheet properties. Furthermore, generation and propagation of bending errors depend on individual bend sequences. Bend sequence planning is carried out to minimize bending errors, keeping in view the available tooling geometry and the sheet material properties’ variation. Research reported in this article attempts to develop a STEP-compliant, vendor neutral design and manufacturing framework for discrete sheet metal bend parts to provide a capability of bidirectional communication between design and manufacturing cycles. Proposed framework will facilitate the use of design information downstream at the manufacturing stage in the form of bending workplan, bending workingsteps and a feedback mechanism to the upstage product designer. In order to realize this vendor neutral framework, STEP (ISO 10303), AP203, AP207, and AP219 along with STEP-NC (ISO14649) have been used to provide a basis of vendor neutral data modeling.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3819
Author(s):  
Ting-Hsun Lan ◽  
Yu-Feng Chen ◽  
Yen-Yun Wang ◽  
Mitch M. C. Chou

The computer-aided design/computer-aided manufacturing (CAD/CAM) fabrication technique has become one of the hottest topics in the dental field. This technology can be applied to fixed partial dentures, removable dentures, and implant prostheses. This study aimed to evaluate the feasibility of NaCaPO4-blended zirconia as a new CAD/CAM material. Eleven different proportional samples of zirconia and NaCaPO4 (xZyN) were prepared and characterized by X-ray diffractometry (XRD) and Vickers microhardness, and the milling property of these new samples was tested via a digital optical microscope. After calcination at 950 °C for 4 h, XRD results showed that the intensity of tetragonal ZrO2 gradually decreased with an increase in the content of NaCaPO4. Furthermore, with the increase in NaCaPO4 content, the sintering became more obvious, which improved the densification of the sintered body and reduced its porosity. Specimens went through milling by a computer numerical control (CNC) machine, and the marginal integrity revealed that being sintered at 1350 °C was better than being sintered at 950 °C. Moreover, 7Z3N showed better marginal fit than that of 6Z4N among thirty-six samples when sintered at 1350 °C (p < 0.05). The milling test results revealed that 7Z3N could be a new CAD/CAM material for dental restoration use in the future.


2021 ◽  
Vol 13 (3) ◽  
pp. 168781402110027
Author(s):  
Byung Chul Kim ◽  
Ilhwan Song ◽  
Duhwan Mun

Manufacturers of machine parts operate computerized numerical control (CNC) machine tools to produce parts precisely and accurately. They build computer-aided manufacturing (CAM) models using CAM software to generate code to control these machines from computer-aided design (CAD) models. However, creating a CAM model from CAD models is time-consuming, and is prone to errors because machining operations and their sequences are defined manually. To generate CAM models automatically, feature recognition methods have been studied for a long time. However, since the recognition range is limited, it is challenging to apply the feature recognition methods to parts having a complicated shape such as jet engine parts. Alternatively, this study proposes a practical method for the fast generation of a CAM model from CAD models using shape search. In the proposed method, when an operator selects one machining operation as a source machining operation, shapes having the same machining features are searched in the part, and the source machining operation is copied to the locations of the searched shapes. This is a semi-automatic method, but it can generate CAM models quickly and accurately when there are many identical shapes to be machined. In this study, we demonstrate the usefulness of the proposed method through experiments on an engine block and a jet engine compressor case.


Author(s):  
L Q Tang ◽  
D N Moreton

The timing scroll is an important feeding mechanism on packaging lines. As packaging line speeds have increased and the shape of containers has become more diverse, the techniques used for the design and manufacture of such timing scrolls have become critical for successful packaging line performance. Since 1980, various techniques have evolved to improve scroll design, manufacture and the associated line performance. In recent years, as CAD (computer aided design), CAM (computer aided manufacture) and CNC (computer numerical control) techniques have evolved, scroll design and manufacturing techniques began to be linked with computer techniques. In this paper, a scroll design and manufacturing package is presented which can be run on a minicomputer, such as a μ-VAX on an IBM PC clone. This scroll package can produce a timing scroll for any type of container with a correct pocket shape and good dynamic characteristic. Tests using carefully chosen containers have been made using this package and the results indicate that the scrolls obtained by this package have the correct pocket shape and good line performance. However, the design of a good pick-up geometry for some container shapes remains a problem.


Author(s):  
Haichao Wang ◽  
Jie Zhang ◽  
Xiaolong Zhang ◽  
Changwei Ren ◽  
Xiaoxi Wang ◽  
...  

Feature recognition is an important technology of computer-aided design/computer-aided engineering/computer-aided process planning/computer-aided manufacturing integration in cast-then-machined part manufacturing. Graph-based approach is one of the most popular feature recognition methods; however, it cannot still solve concave-convex mixed interacting feature recognition problem, which is a common problem in feature recognition of cast-then-machined parts. In this study, an oriented feature extraction and recognition approach is proposed for concave-convex mixed interacting features. The method first extracts predefined features directionally according to the rules generated from attributed adjacency graphs–based feature library and peels off them from part model layer by layer. Sub-features in an interacting feature are associated via hints and organized as a feature tree. The time cost is reduced to less than [Formula: see text] by eliminating subgraph isomorphism and matching operations. Oriented feature extraction and recognition approach recognizes non-freeform-surface features directionally regardless of the part structure. Hence, its application scope can be extended to multiple kinds of non-freeform-surface parts by customizing. Based on our findings, implementations on prismatic, plate, fork, axlebox, linkage, and cast-then-machined parts prove that the proposed approach is applicable on non-freeform-surface parts and effectively recognize concave-convex mixed interacting feature in various mechanical parts.


2017 ◽  
Vol 9 (7) ◽  
pp. 168781401771038 ◽  
Author(s):  
Isad Saric ◽  
Adil Muminovic ◽  
Mirsad Colic ◽  
Senad Rahimic

This article presents architecture of integrated intelligent computer-aided design system for designing mechanical power-transmitting mechanisms (IICADkmps). The system has been developed in C# program environment with the aim of automatising the design process. This article presents a modern, automated approach to design. Developed kmps modules for calculation of geometrical and design characteristics of mechanical power-transmitting mechanisms are described. Three-dimensional geometrical parameter modelling of mechanical power-transmitting mechanisms was performed in the computer-aided design/computer-aided manufacturing/computer-aided engineering system CATIA V5. The connection between kmps calculation modules and CATIA V5 modelling system was established through initial three-dimensional models – templates. The outputs from the developed IICADkmps system generated final three-dimensional virtual models of mechanical power-transmitting mechanisms. Testing of the developed IICADkmps system was performed on friction, belt, cogged (spur and bevel gears) and chain transmitting mechanisms. Also, connection of the developed IICADkmps system with a device for rapid prototyping and computer numerical control machines was made for the purpose of additional testing and verification of practical use. Physical prototypes of designed characteristic elements of mechanical power-transmitting mechanisms were manufactured. The selected test three-dimensional virtual prototypes, obtained as an output from the developed IICADkmps system, were manufactured on the device for rapid prototyping (three-dimensional colour printer Spectrum Z510) and computer numerical control machines. Finally, at the end of the article, conclusions and suggested possible directions of further research, based on theoretical and practical research results, are presented.


Sign in / Sign up

Export Citation Format

Share Document