A Reliability-Based Design Method Using Simulation Techniques and Efficient Optimization Approach

Author(s):  
Tong Zou ◽  
Sankaran Mahadevan ◽  
Akhil Sopory

A novel reliability-based design optimization (RBDO) method using simulation-based techniques for reliability assessments and efficient optimization approach is presented in this paper. In RBDO, model-based reliability analysis needs to be performed to calculate the probability of not satisfying a reliability constraint and the gradient of this probability with respect to each design variable. Among model-based methods, the most widely used in RBDO is the first-order reliability method (FORM). However, FORM could be inaccurate for nonlinear problems and is not applicable for system reliability problems. This paper develops an efficient optimization methodology to perform RBDO using simulation-based techniques. By combining analytical and simulation-based reliability methods, accurate probability of failure and sensitivity information is obtained. The use of simulation also enables both component and system-level reliabilities to be included in RBDO formulation. Instead of using a traditional RBDO formulation in which optimization and reliability computations are nested, a sequential approach is developed to greatly reduce the computational cost. The efficiency of the proposed RBDO approach is enhanced by using a multi-modal adaptive importance sampling technique for simulation-based reliability assessment; and by treating the inactive reliability constraints properly in optimization. A vehicle side impact problem is used to demonstrate the capabilities of the proposed method.

Author(s):  
Wenqing Zheng ◽  
Hezhen Yang

Reliability based design optimization (RBDO) of a steel catenary riser (SCR) using metamodel is investigated. The purpose of the optimization is to find the minimum-cost design subjecting to probabilistic constraints. To reduce the computational cost of the traditional double-loop RBDO, a single-loop RBDO approach is employed. The performance function is approximated by using metamodel to avoid time consuming finite element analysis during the dynamic optimization. The metamodel is constructed though design of experiments (DOE) sampling. In addition, the reliability assessment is carried out by Monte Carlo simulations. The result shows that the RBDO of SCR is a more rational optimization approach compared with traditional deterministic optimization, and using metamodel technique during the dynamic optimization process can significantly decrease the computational expense without sacrificing accuracy.


Author(s):  
Ramon C. Kuczera ◽  
Zissimos P. Mourelatos ◽  
Efstratios Nikolaidis

A simulation-based, system reliability-based design optimization (RBDO) method is presented that can handle problems with multiple failure regions and correlated random variables. Copulas are used to represent dependence between random variables. The method uses a Probabilistic Re-Analysis (PRRA) approach in conjunction with a sequential trust-region optimization approach and local metamodels covering each trust region. PRRA calculates very efficiently the system reliability of a design by performing a single Monte Carlo (MC) simulation per trust region. Although PRRA is based on MC simulation, it calculates “smooth” sensitivity derivatives, allowing the use of a gradient-based optimizer. The PRRA method is based on importance sampling. One requirement for providing accurate results is that the support of the sampling PDF must contain the support of the joint PDF of the input random variables. The trust-region optimization approach satisfies this requirement. Local metamodels are constructed sequentially for each trust region taking advantage of the potential overlap of the trust regions. The metamodels are used to determine the value of the indicator function in MC simulation. An example with correlated input random variables demonstrates the accuracy and efficiency of the proposed RBDO method.


Author(s):  
Ramon C. Kuczera ◽  
Zissimos P. Mourelatos ◽  
Efstratios Nikolaidis ◽  
Jing Li

A simulation-based, system reliability-based design optimization (RBDO) method is presented which can handle problems with multiple failure regions. The method uses a Probabilistic Re-Analysis (PRRA) approach in conjunction with a trust-region optimization approach. PRRA calculates very efficiently the system reliability of a design by performing a single Monte Carlo (MC) simulation. Although PRRA is based on MC simulation, it calculates “smooth” sensitivity derivatives, allowing therefore, the use of a gradient-based optimizer. The PRRA method is based on importance sampling. It provides accurate results, if the support (set of all values for which a function is non zero) of the sampling PDF contains the support of the joint PDF of the input random variables and, if the mass of the input joint PDF is not concentrated in a region where the sampling PDF is almost zero. A sequential, trust-region optimization approach satisfies these two requirements. The potential of the proposed method is demonstrated using the design of a vibration absorber, and the system RBDO of an internal combustion engine.


2021 ◽  
Vol 11 (7) ◽  
pp. 3059
Author(s):  
Myeong-Hun Jeong ◽  
Tae-Young Lee ◽  
Seung-Bae Jeon ◽  
Minkyo Youm

Movement analytics and mobility insights play a crucial role in urban planning and transportation management. The plethora of mobility data sources, such as GPS trajectories, poses new challenges and opportunities for understanding and predicting movement patterns. In this study, we predict highway speed using a gated recurrent unit (GRU) neural network. Based on statistical models, previous approaches suffer from the inherited features of traffic data, such as nonlinear problems. The proposed method predicts highway speed based on the GRU method after training on digital tachograph data (DTG). The DTG data were recorded in one month, giving approximately 300 million records. These data included the velocity and locations of vehicles on the highway. Experimental results demonstrate that the GRU-based deep learning approach outperformed the state-of-the-art alternatives, the autoregressive integrated moving average model, and the long short-term neural network (LSTM) model, in terms of prediction accuracy. Further, the computational cost of the GRU model was lower than that of the LSTM. The proposed method can be applied to traffic prediction and intelligent transportation systems.


2021 ◽  
Vol 1 ◽  
pp. 3369-3378
Author(s):  
Stephan Husung ◽  
Christian Weber ◽  
Atif Mahboob ◽  
Sven Kleiner

AbstractModel-Based Systems Engineering (MBSE) is an efficient approach to support product development in order to meet today's challenges. The MBSE approach includes methods and, above all, modelling approaches of the technical system with the aim of continuous use in development. The objective of this paper is to use the potential of the MBSE models and to show the added value of such models on the system level when used as a single source. With this objective, this paper presents a three-step approach to systematically identify and apply meaningful modelling approaches within MBSE, based on the needs during the development process. Furthermore, an FMEA example is included in this paper to elaborate the use of MBSE in the system failure analysis.


Author(s):  
Matthias Grot ◽  
Tristan Becker ◽  
Pia Mareike Steenweg ◽  
Brigitte Werners

AbstractIn order to allocate limited resources in emergency medical services (EMS) networks, mathematical models are used to select sites and their capacities. Many existing standard models are based on simplifying assumptions, including site independency and a similar system-wide busyness of ambulances. In practice, when a site is busy, a call is forwarded to another site. Thus, the busyness of each site depends not only on the rate of calls in the surrounding area, but also on interactions with other facilities. If the demand varies across the urban area, assuming an average system-wide server busy fraction may lead to an overestimation of the actual coverage. We show that site interdependencies can be integrated into the well-known Maximum Expected Covering Location Problem (MEXCLP) by introducing an upper bound for the busyness of each site. We apply our new mathematical formulation to the case of a local EMS provider. To evaluate the solution quality, we use a discrete event simulation based on anonymized real-world call data. Results of our simulation-optimization approach indicate that the coverage can be improved in most cases by taking site interdependencies into account, leading to an improved ambulance allocation and a faster emergency care.


2005 ◽  
Vol 297-300 ◽  
pp. 1882-1887
Author(s):  
Tae Hee Lee ◽  
Jung Hun Yoo

In practical design applications, most design variables such as thickness, diameter and material properties are not deterministic but stochastic numbers that can be represented by their mean values with variances because of various uncertainties. When the uncertainties related with design variables and manufacturing process are considered in engineering design, the specified reliability of the design can be achieved by using the so-called reliability based design optimization. Reliability based design optimization takes into account the uncertainties in the design in order to meet the user requirement of the specified reliability while seeking optimal solution. Reliability based design optimization of a real system becomes now an emerging technique to achieve reliability, robustness and safety of the design. It is, however, well known that reliability based design optimization can often have so multiple local optima that it cannot converge into the specified reliability. To overcome this difficulty, barrier function approach in reliability based design optimization is proposed in this research and feasible solution with specified reliability index is always provided if a feasible solution is available. To illustrate the proposed formulation, reliability based design optimization of a bracket design is performed. Advanced mean value method and first order reliability method are employed for reliability analysis and their optimization results are compared with reliability index approach based on the accuracy and efficiency.


Sign in / Sign up

Export Citation Format

Share Document