Magnetorheological Fluid Brake for a Force Feedback Glove for Virtual Environments

Author(s):  
Jonathan Blake ◽  
Hakan Gurocak

The research and development of a Magnetorheological (MR) fluid brake for use in a force feedback glove is presented. The glove is a haptic interface for a virtual reality (VR) environment. The glove implements the MR fluid brakes to restrict motion of the VR user’s fingers. It is controlled by an input current and produces a corresponding output torque. The torque of the MR fluid brake is equivalent to the continuous torque exerted by a typical human index finger. Two sizes of brakes were developed to control the joints of the thumb, index, and middle fingers. The paper presents background and design details of implementing the MR fluid. The prototype designs of the MR fluid brakes are then introduced. Test procedures and results of the braking torque and response time are presented. Lastly, the implementation of the brakes into a force feedback glove is briefly discussed. Test results show that the MR fluid brake is capable of restricting the motion of a human finger.

Author(s):  
Mark J. Lelieveld ◽  
Takashi Maeno ◽  
Tetsuo Tomiyama

This research aims to develop a portable haptic master hand with 20 degrees of freedom (DOF). Master hands are used as haptic interfaces in master-slave systems. A master-slave system consists of a haptic interface that communicates with a virtual world or an end-effector for tele-operation, such as a robot hand. The thumb and fingers are usually modeled as a serial linkage mechanism with 4 DOF. So far, no 20 DOF master hands have been developed that can exert perpendicular forces on the finger phalanges during the complete flexion and extension motion. In this paper, the design and development of two concepts of a portable 4 DOF haptic interface for the index finger is presented. Concept A is a statically balanced haptic interface with a rolling-link mechanism (RLM) and an integrated constant torque spring per DOF for perpendicular and active force feedback. Concept B utilizes a mechanical tape brake at the RLM for passive force feedback. The systematic Pahl and Beitz design approach is used as an iterative design method.


Author(s):  
Andreas M. Kunz ◽  
Adrian Burri

Abstract Virtual Reality becomes more and more important within the product development process. It enables the engineer to realize constraints or mistakes in the product design at a very early stage by viewing the digital geometric prototype. Beside viewing the design of a product, additional functionalities like simulation of assembling, the physically correct behavior of a machine or the machine control come into focus of interest. Therefore, the interaction modality of haptic feedback gains more and more importance for simulation tasks in virtual environments. However there are only a few portable haptic interfaces with which the user can experience in a natural way the sensation of force feedback. The scope of this paper is to present a new passive haptic interface that is lightweight and easy to use. Furthermore it has no constraints in the workspace and applies high forces to the fingertips of the user by blocking the natural grasping.


2010 ◽  
Vol 2 (2) ◽  
pp. 8
Author(s):  
Evy Setiawati

Rattan on frequently attacked by the powder post beetle (Tellu, 2001). The prevention of dry powder attacks is done by preservation. The increasing resistant of rattan from insect attack can be done by an environmentally friendly preservative, the Galam wood vinegar. This research  aims to determine the most effective concentration of preservative that shows the lowest attacks level of D. Farb minutus powder. The rattan used is green rattan (Calamus sp.) The concentration of preservative that are used:10%, 40%, 70% and 100%. The testing of dry powder attack  used force feedback method. The effectiveness test parameters of wood vinegar to dry powder attacks  included degree of protection Dinoderus minutus Farb. powder,  reduction percentage of rattan weight and the mortality of dry powder Dinoderus sp for toxicological testing of wood vinegar. The test results showed that the degree of protection powder in rattan growing along with the increased concentration of preservatives. The higher the concentration of  wood vinegar, the smaller the reduction of rattan weight and the higher the mortality rate of dry powder. Keywords: resistant of rattan, wood vinegar, Dinoderus minutus.


2017 ◽  
Vol 52 (14) ◽  
pp. 1847-1872 ◽  
Author(s):  
Bilal Khaled ◽  
Loukham Shyamsunder ◽  
Canio Hoffarth ◽  
Subramaniam D Rajan ◽  
Robert K Goldberg ◽  
...  

Test procedures for characterizing the orthotropic behavior of a unidirectional composite at room temperature and quasi-static loading conditions are developed and discussed. The resulting data consisting of 12 stress–strain curves and associated material parameters are used in a newly developed material model—an orthotropic elasto-plastic constitutive model that is driven by tabulated stress–strain curves and other material properties that allow for the elastic and inelastic deformation model to be combined with damage and failure models. A unidirectional composite—T800/F3900, commonly used in the aerospace industry, is used to illustrate how the experimental procedures are developed and used. The generated data are then used to model a dynamic impact test. Results show that the developed framework implemented into a special version of LS-DYNA yields reasonably accurate predictions of the structural behavior.


2014 ◽  
Vol 484-485 ◽  
pp. 1118-1125
Author(s):  
Rao Shun

There are more and more complex tools and machinery that need be operated by human fingers in our modem industrial environment. Such as computer keyboards, screwdriver, handle wrench, button and switch. All of those should be designed to work effectively and safely with the operators for whom they were designed. At first, ergonomic consideration in design is reachable; this means the operators fingertip must be able to reach the operating component. This is generally no question because human arm has much more degrees of freedom required to position his arms, hands and fingers in the three-dimension space. However, some times we need the finger operate with a fixed wrist. For example in the case in the typing, the reachable workspace of the finger must take into account in such situation.Finger contacting is the most familiar operation mode of the man-machine system, and the index finger takes on the primary operation tasks. From viewpoint of ergonomic engineering, the operation component should be placed within the workspace of the fingertip to reduced or eliminate the movement of palm and arm should to the greatest extent during finger manipulation. Therefore the research of the workspace of ginger is significant to the ergonomic design of the operation device. In this paper, the reachable workspace and workspace under direction restrain of contacting for the index finger are determined using serial mechanism model and the Penalty Function Method based on geometric measurement of human body. The optimal operating position and orientation of human finger is analyzed.


Author(s):  
Víctor H. Andaluz ◽  
Cartagena Patricio ◽  
Naranjo José ◽  
Agreda José ◽  
López Shirley

2017 ◽  
Vol 69 (2) ◽  
pp. 116-122 ◽  
Author(s):  
Chiranjit Sarkar ◽  
Harish Hirani

Purpose This study aims to design an ideal magnetorheological (MR) brake that exerts negligible frictional torque in the off-state condition and controllable frictional torque in the on-state condition. Design/methodology/approach Silicone-based MR fluid, containing 9 per cent volume carbonyl iron particles, has been synthesized and used. The synthesized MR fluid is advantageous in maintaining low friction losses in off-state conditions. A magneto-rheometer has been utilized to characterize the off-state viscosity of the MR fluid at variable shear rates and shear stress of MR fluids at various magnetic fields. A mechanism to enhance the braking torque in the on-state condition has been designed and developed. An experimental test rig has been developed to capture the torque characteristics of the developed MR brakes. Three different designs of MR discs have been experimented under a magnetic field varying from 0 to 375 kA/m. Experimental results of braking torque under shear and compression modes have been presented. Findings Slotted disc MR brake gives much better torque performance. Originality/value The braking torque results motivate to use the slotted disc MR brake for high torque application.


2021 ◽  
Author(s):  
Seigo Okada ◽  
Yasunao Okazaki ◽  
Yusuke Kato ◽  
Jun Ozawa ◽  
Takeshi Ando

Sign in / Sign up

Export Citation Format

Share Document