Incorporating Twinkling in Genetic Algorithms for Global Optimization

Author(s):  
George S. Ladkany ◽  
Mohamed B. Trabia

Genetic algorithms have been extensively used as a reliable tool for global optimization. However these algorithms suffer from their slow convergence. To address this limitation, this paper proposes a two-fold approach to address these limitations. The first approach is to introduce a twinkling process within the crossover phase of a genetic algorithm. Twinkling can be incorporated within any standard algorithm by introducing a controlled random deviation from its standard progression to avoiding being trapped at a local minimum. The second approach is to introduce a crossover technique: the weighted average normally-distributed arithmetic crossover that is shown to enhance the rate of convergence. Two possible twinkling genetic algorithms are proposed. The performance of the proposed algorithms is successfully compared to simple genetic algorithms using various standard mathematical and engineering design problems. The twinkling genetic algorithms show their ability to consistently reach known global minima, rather than nearby sub-optimal points with a competitive rate of convergence.

2021 ◽  
Vol 18 (6) ◽  
pp. 7076-7109
Author(s):  
Shuang Wang ◽  
◽  
Heming Jia ◽  
Qingxin Liu ◽  
Rong Zheng ◽  
...  

<abstract> <p>This paper introduces an improved hybrid Aquila Optimizer (AO) and Harris Hawks Optimization (HHO) algorithm, namely IHAOHHO, to enhance the searching performance for global optimization problems. In the IHAOHHO, valuable exploration and exploitation capabilities of AO and HHO are retained firstly, and then representative-based hunting (RH) and opposition-based learning (OBL) strategies are added in the exploration and exploitation phases to effectively improve the diversity of search space and local optima avoidance capability of the algorithm, respectively. To verify the optimization performance and the practicability, the proposed algorithm is comprehensively analyzed on standard and CEC2017 benchmark functions and three engineering design problems. The experimental results show that the proposed IHAOHHO has more superior global search performance and faster convergence speed compared to the basic AO and HHO and selected state-of-the-art meta-heuristic algorithms.</p> </abstract>


2021 ◽  
Vol 11 (5) ◽  
pp. 2277
Author(s):  
Guirong Dong ◽  
Chengyang Liu ◽  
Dianzi Liu ◽  
Xiaoan Mao

Over the last decade, metaheuristic algorithms have emerged as a powerful paradigm for global optimization of multimodal functions formulated by nonlinear problems arising from various engineering subjects. However, numerical analyses of many complex engineering design problems may be performed using finite element method (FEM) or computational fluid dynamics (CFD), by which function evaluations of population-based algorithms are repetitively computed to seek a global optimum. It is noted that these simulations become computationally prohibitive for design optimization of complex structures. To efficiently and effectively address this class of problems, an adaptively integrated swarm intelligence-metamodelling (ASIM) technique enabling multi-level search and model management for the optimal solution is proposed in this paper. The developed technique comprises two steps: in the first step, a global-level exploration for near optimal solution is performed by adaptive swarm-intelligence algorithm, and in the second step, a local-level exploitation for the fine optimal solution is studied on adaptive metamodels, which are constructed by the multipoint approximation method (MAM). To demonstrate the superiority of the proposed technique over other methods, such as conventional MAM, particle swarm optimization, hybrid cuckoo search, and water cycle algorithm in terms of computational expense associated with solving complex optimization problems, one benchmark mathematical example and two real-world complex design problems are examined. In particular, the key factors responsible for the balance between exploration and exploitation are discussed as well.


Author(s):  
Lata Nautiyal ◽  
Preeti Shivach ◽  
Mangey Ram

With the advancement in contemporary computational and modeling skills, engineering design completely depends upon on variety of computer modeling and simulation tools to hasten the design cycles and decrease the overall budget. The most difficult design problem will include various design parameters along with the tables. Finding out the design space and ultimate solutions to those problems are still biggest challenges for the area of complex systems. This chapter is all about suggesting the use of Genetic Algorithms to enhance maximum engineering design problems. The chapter recommended that Genetic Algorithms are highly useful to increase the High-Performance Areas for Engineering Design. This chapter is established to use Genetic Algorithms to large number of design areas and delivered a comprehensive conversation on the use, scope and its applications in mechanical engineering.


Author(s):  
Lata Nautiyal ◽  
Preeti Shivach ◽  
Mangey Ram

With the advancement in contemporary computational and modeling skills, engineering design completely depends upon on variety of computer modeling and simulation tools to hasten the design cycles and decrease the overall budget. The most difficult design problem will include various design parameters along with the tables. Finding out the design space and ultimate solutions to those problems are still biggest challenges for the area of complex systems. This chapter is all about suggesting the use of Genetic Algorithms to enhance maximum engineering design problems. The chapter recommended that Genetic Algorithms are highly useful to increase the High-Performance Areas for Engineering Design. This chapter is established to use Genetic Algorithms to large number of design areas and delivered a comprehensive conversation on the use, scope and its applications in mechanical engineering.


2004 ◽  
Vol 126 (6) ◽  
pp. 969-974 ◽  
Author(s):  
Mohamed B. Trabia

This paper presents a novel hybrid genetic algorithm that has the ability of the genetic algorithms to avoid being trapped at local minimum while accelerating the speed of local search by using the fuzzy simplex algorithm. The new algorithm is labeled the hybrid fuzzy simplex genetic algorithm (HFSGA). Standard test problems are used to evaluate the efficiency of the algorithm. The algorithm is also applied successfully to several engineering design problems. The HFSGA generally results in a faster convergence toward extremum.


1988 ◽  
Vol 21 (1) ◽  
pp. 5-9 ◽  
Author(s):  
E G McCluskey ◽  
S Thompson ◽  
D M G McSherry

Many engineering design problems require reference to standards or codes of practice to ensure that acceptable safety and performance criteria are met. Extracting relevant data from such documents can, however, be a problem for the unfamiliar user. The use of expert systems to guide the retrieval of information from standards and codes of practice is proposed as a means of alleviating this problem. Following a brief introduction to expert system techniques, a tool developed by the authors for building expert system guides to standards and codes of practice is described. The steps involved in encoding the knowledge contained in an arbitrarily chosen standard are illustrated. Finally, a typical consultation illustrates the use of the expert system guide to the standard.


Sign in / Sign up

Export Citation Format

Share Document