scholarly journals An improved hybrid Aquila Optimizer and Harris Hawks Optimization for global optimization

2021 ◽  
Vol 18 (6) ◽  
pp. 7076-7109
Author(s):  
Shuang Wang ◽  
◽  
Heming Jia ◽  
Qingxin Liu ◽  
Rong Zheng ◽  
...  

<abstract> <p>This paper introduces an improved hybrid Aquila Optimizer (AO) and Harris Hawks Optimization (HHO) algorithm, namely IHAOHHO, to enhance the searching performance for global optimization problems. In the IHAOHHO, valuable exploration and exploitation capabilities of AO and HHO are retained firstly, and then representative-based hunting (RH) and opposition-based learning (OBL) strategies are added in the exploration and exploitation phases to effectively improve the diversity of search space and local optima avoidance capability of the algorithm, respectively. To verify the optimization performance and the practicability, the proposed algorithm is comprehensively analyzed on standard and CEC2017 benchmark functions and three engineering design problems. The experimental results show that the proposed IHAOHHO has more superior global search performance and faster convergence speed compared to the basic AO and HHO and selected state-of-the-art meta-heuristic algorithms.</p> </abstract>

Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1551
Author(s):  
Shuang Wang ◽  
Heming Jia ◽  
Laith Abualigah ◽  
Qingxin Liu ◽  
Rong Zheng

Aquila Optimizer (AO) and Harris Hawks Optimizer (HHO) are recently proposed meta-heuristic optimization algorithms. AO possesses strong global exploration capability but insufficient local exploitation ability. However, the exploitation phase of HHO is pretty good, while the exploration capability is far from satisfactory. Considering the characteristics of these two algorithms, an improved hybrid AO and HHO combined with a nonlinear escaping energy parameter and random opposition-based learning strategy is proposed, namely IHAOHHO, to improve the searching performance in this paper. Firstly, combining the salient features of AO and HHO retains valuable exploration and exploitation capabilities. In the second place, random opposition-based learning (ROBL) is added in the exploitation phase to improve local optima avoidance. Finally, the nonlinear escaping energy parameter is utilized better to balance the exploration and exploitation phases of IHAOHHO. These two strategies effectively enhance the exploration and exploitation of the proposed algorithm. To verify the optimization performance, IHAOHHO is comprehensively analyzed on 23 standard benchmark functions. Moreover, the practicability of IHAOHHO is also highlighted by four industrial engineering design problems. Compared with the original AO and HHO and five state-of-the-art algorithms, the results show that IHAOHHO has strong superior performance and promising prospects.


2022 ◽  
Vol 19 (1) ◽  
pp. 473-512
Author(s):  
Rong Zheng ◽  
◽  
Heming Jia ◽  
Laith Abualigah ◽  
Qingxin Liu ◽  
...  

<abstract> <p>Arithmetic optimization algorithm (AOA) is a newly proposed meta-heuristic method which is inspired by the arithmetic operators in mathematics. However, the AOA has the weaknesses of insufficient exploration capability and is likely to fall into local optima. To improve the searching quality of original AOA, this paper presents an improved AOA (IAOA) integrated with proposed forced switching mechanism (FSM). The enhanced algorithm uses the random math optimizer probability (<italic>RMOP</italic>) to increase the population diversity for better global search. And then the forced switching mechanism is introduced into the AOA to help the search agents jump out of the local optima. When the search agents cannot find better positions within a certain number of iterations, the proposed FSM will make them conduct the exploratory behavior. Thus the cases of being trapped into local optima can be avoided effectively. The proposed IAOA is extensively tested by twenty-three classical benchmark functions and ten CEC2020 test functions and compared with the AOA and other well-known optimization algorithms. The experimental results show that the proposed algorithm is superior to other comparative algorithms on most of the test functions. Furthermore, the test results of two training problems of multi-layer perceptron (MLP) and three classical engineering design problems also indicate that the proposed IAOA is highly effective when dealing with real-world problems.</p> </abstract>


2017 ◽  
Vol 2017 ◽  
pp. 1-23 ◽  
Author(s):  
Yuting Lu ◽  
Yongquan Zhou ◽  
Xiuli Wu

In this paper, a novel hybrid lightning search algorithm-simplex method (LSA-SM) is proposed to solve the shortcomings of lightning search algorithm (LSA) premature convergence and low computational accuracy and it is applied to function optimization and constrained engineering design optimization problems. The improvement adds two major optimization strategies. Simplex method (SM) iteratively optimizes the current worst step leaders to avoid the population searching at the edge, thus improving the convergence accuracy and rate of the algorithm. Elite opposition-based learning (EOBL) increases the diversity of population to avoid the algorithm falling into local optimum. LSA-SM is tested by 18 benchmark functions and five constrained engineering design problems. The results show that LSA-SM has higher computational accuracy, faster convergence rate, and stronger stability than other algorithms and can effectively solve the problem of constrained nonlinear optimization in reality.


2021 ◽  
Vol 40 (1) ◽  
pp. 919-946
Author(s):  
Morteza Karimzadeh Parizi ◽  
Farshid Keynia ◽  
Amid Khatibi bardsiri

Success of metaheuristic algorithms depends on the efficient balance between of exploration and exploitation phases. Any optimization algorithm requires a combination of diverse exploration and proper exploitation to avoid local optima. This paper proposes a new improved version of the Woodpecker Mating Algorithm (WMA), based on opposition-based learning, known as the OWMA aiming to develop exploration and exploitation capacities and establish a simultaneous balance between these two phases. This improvement consists of three major mechanisms, the first of which is the new Distance Opposition-based Learning (DOBL) mechanism for improving exploration, diversity, and convergence. The second mechanism is the allocation of local memory of personal experiences of search agents for developing the exploitation capacity. The third mechanism is the use of a self-regulatory and dynamic method for setting the Hα parameter to improve the Running Away function (RA) performance. The ability of the proposed algorithm to solve 23 benchmark mathematical functions was evaluated and compared to that of a series of the latest and most popular metaheuristic methods reviewed in the research literature. The proposed algorithm is also used as a Multi-Layer Perceptron (MLP) neural network trainer to solve the classification problem on four biomedical datasets and three function approximation datasets. In addition, the OWMA algorithm was evaluated in five optimization problems constrained by the real world. The simulation results proved the superior and promising performance of the proposed algorithm in the majority of evaluations. The results prove the superiority and promising performance of the proposed algorithm in solving very complicated optimization problems.


Author(s):  
Ali Kaveh ◽  
Majid Ilchi Ghazaan ◽  
Arash Asadi

Water Strider Algorithm (WSA) is a new metaheuristic method that is inspired by the life cycle of water striders. This study attempts to enhance the performance of the WSA in order to improve solution accuracy, reliability, and convergence speed. The new method, called improved water strider algorithm (IWSA), is tested in benchmark mathematical functions and some structural optimization problems. In the proposed algorithm, the standard WSA is augmented by utilizing an opposition-based learning method for the initial population as well as a mutation technique borrowed from the genetic algorithm. By employing Generalized Space Transformation Search (GSTS) as an opposition-based learning method, more promising regions of the search space are explored; therefore, the precision of the results is enhanced. By adding a mutation to the WSA, the method is helped to escape from local optimums which is essential for engineering design problems as well as complex mathematical optimization problems. First, the viability of IWSA is demonstrated by optimizing benchmark mathematical functions, and then it is applied to three skeletal structures to investigate its efficiency in structural design problems. IWSA is compared to the standard WSA and some other state-of-the-art metaheuristic algorithms. The results show the competence and robustness of the IWSA as an optimization algorithm in mathematical functions as well as in the field of structural optimization.


2022 ◽  
Vol 19 (3) ◽  
pp. 2240-2285
Author(s):  
Shihong Yin ◽  
◽  
Qifang Luo ◽  
Yanlian Du ◽  
Yongquan Zhou ◽  
...  

<abstract> <p>The slime mould algorithm (SMA) is a metaheuristic algorithm recently proposed, which is inspired by the oscillations of slime mould. Similar to other algorithms, SMA also has some disadvantages such as insufficient balance between exploration and exploitation, and easy to fall into local optimum. This paper, an improved SMA based on dominant swarm with adaptive t-distribution mutation (DTSMA) is proposed. In DTSMA, the dominant swarm is used improved the SMA's convergence speed, and the adaptive t-distribution mutation balances is used enhanced the exploration and exploitation ability. In addition, a new exploitation mechanism is hybridized to increase the diversity of populations. The performances of DTSMA are verified on CEC2019 functions and eight engineering design problems. The results show that for the CEC2019 functions, the DTSMA performances are best; for the engineering problems, DTSMA obtains better results than SMA and many algorithms in the literature when the constraints are satisfied. Furthermore, DTSMA is used to solve the inverse kinematics problem for a 7-DOF robot manipulator. The overall results show that DTSMA has a strong optimization ability. Therefore, the DTSMA is a promising metaheuristic optimization for global optimization problems.</p> </abstract>


2021 ◽  
Vol 11 (5) ◽  
pp. 2277
Author(s):  
Guirong Dong ◽  
Chengyang Liu ◽  
Dianzi Liu ◽  
Xiaoan Mao

Over the last decade, metaheuristic algorithms have emerged as a powerful paradigm for global optimization of multimodal functions formulated by nonlinear problems arising from various engineering subjects. However, numerical analyses of many complex engineering design problems may be performed using finite element method (FEM) or computational fluid dynamics (CFD), by which function evaluations of population-based algorithms are repetitively computed to seek a global optimum. It is noted that these simulations become computationally prohibitive for design optimization of complex structures. To efficiently and effectively address this class of problems, an adaptively integrated swarm intelligence-metamodelling (ASIM) technique enabling multi-level search and model management for the optimal solution is proposed in this paper. The developed technique comprises two steps: in the first step, a global-level exploration for near optimal solution is performed by adaptive swarm-intelligence algorithm, and in the second step, a local-level exploitation for the fine optimal solution is studied on adaptive metamodels, which are constructed by the multipoint approximation method (MAM). To demonstrate the superiority of the proposed technique over other methods, such as conventional MAM, particle swarm optimization, hybrid cuckoo search, and water cycle algorithm in terms of computational expense associated with solving complex optimization problems, one benchmark mathematical example and two real-world complex design problems are examined. In particular, the key factors responsible for the balance between exploration and exploitation are discussed as well.


Author(s):  
Sajad Ahmad Rather ◽  
P. Shanthi Bala

In recent years, various heuristic algorithms based on natural phenomena and swarm behaviors were introduced to solve innumerable optimization problems. These optimization algorithms show better performance than conventional algorithms. Recently, the gravitational search algorithm (GSA) is proposed for optimization which is based on Newton's law of universal gravitation and laws of motion. Within a few years, GSA became popular among the research community and has been applied to various fields such as electrical science, power systems, computer science, civil and mechanical engineering, etc. This chapter shows the importance of GSA, its hybridization, and applications in solving clustering and classification problems. In clustering, GSA is hybridized with other optimization algorithms to overcome the drawbacks such as curse of dimensionality, trapping in local optima, and limited search space of conventional data clustering algorithms. GSA is also applied to classification problems for pattern recognition, feature extraction, and increasing classification accuracy.


Author(s):  
Moslem Kazemi ◽  
G. Gary Wang ◽  
Shahryar Rahnamayan ◽  
Kamal Gupta

Many engineering design problems deal with global optimization of constrained black-box problems which is usually computation-intensive. Ref. [1] proposed a Mode-Pursuing Sampling (MPS) method for global optimization based on a sampling technique which systematically generates more sample points in the neighborhood of the function mode while statistically covering the entire problem domain. In this paper, we propose a novel and more efficient sampling technique which greatly enhances the performance of the MPS method, especially in the presence of expensive constraints. The effective sampling of the search space is attained via biasing the sample points towards feasible regions and being away from the forbidden regions. This is achieved by utilizing the incrementally obtained information about the constraints, hence, it is called Constraint-importance Mode Pursuing Sampling (CiMPS). According to intensive comparisons and experimental verifications, the new sampling technique is found to be more efficient in solving constrained optimization problems compared to the original MPS method. To the best of our knowledge, this is the first metamodel-based global optimization method that directly aims at reducing the number of function evaluations for both expensive objective functions and constraints.


2017 ◽  
Vol 5 (2) ◽  
pp. 249-273 ◽  
Author(s):  
Rizk M. Rizk-Allah

Abstract This paper presents a new algorithm based on hybridizing the sine cosine algorithm (SCA) with a multi-orthogonal search strategy (MOSS), named multi-orthogonal sine cosine algorithm (MOSCA), for solving engineering design problems. The proposed MOSCA integrates the advantages of the SCA and MOSS to eliminate SCA's disadvantages, like unbalanced exploitation and the trapping in local optima. The proposed MOSCA works in two stages, firstly, the SCA phase starts the search process to enhance exploration capability. Secondly, the MOSS phase starts its search from SCA found so far to boost the exploitation tendencies. In this regard, MOSS phase can assist SCA phase to search based on deeper exploration/exploitation patterns as an alternative. Therefore, the MOSCA can be more robust, statistically sound, and quickly convergent. The performance of the MOSCA algorithm is investigated by applying it on eighteen benchmark problems and four engineering design problems. The experimental results indicate that MOSCA is a promising algorithm and outperforms the other algorithms in most cases. Highlights MOSCA is presented to solve design and manufacturing optimization problems efficiently. MOSCA is based on two phases namely, sine cosine algorithm (SCA) and multi-orthogonal search strategy (MOSS). The integrated MOSCA enhances exploration tendency and exploitation capability. The MOSCA can be more robust, statistically sound, and quickly convergent. New approach produced successful results compared to the literature studies.


Sign in / Sign up

Export Citation Format

Share Document