Vibration Signature Analysis of a Rotor Bearing System Using Response Surface Method

Author(s):  
P. K. Kankar ◽  
Satish C. Sharma ◽  
S. P. Harsha

The vibration response of a rotor bearing system is extremely important in industries and is challenged by their highly non-linear and complex properties. This paper focuses on performance prediction using response surface method (RSM), which is essential to the design of high performance rotor bearing system. Response surface method is utilized to analysis the effects of design and operating parameters on the vibration response of a rotor-bearing system. A test rig of high speed rotor supported on rolling bearings is used. Vibration response of the healthy ball bearing and ball bearings with various faults are obtained and analyzed. Distributed defects are considered as surface waviness of the bearing components. Effects of internal radial clearance and surface waviness of the bearing components and their interaction are analyzed using design of experiment (DOE) and RSM.

2009 ◽  
Vol 28 (4) ◽  
pp. 841-857 ◽  
Author(s):  
P.K. Kankar ◽  
S.P. Harsha ◽  
Pradeep Kumar ◽  
Satish C. Sharma

2021 ◽  
pp. 095745652110307
Author(s):  
Hara P Mishra ◽  
Arun Jalan

This article presents the experimental and statistical methodology for localized fault analysis in the rotor-bearing system. These defects on outer race, on inner race, and on a combination of ball and outer race are considered. In this study speed, load and defects were considered as the essential process variables to understand their significance and effects on vibration response for the rotor-bearing system. Three factors at three levels were considered for experimentation, and the experiment was designed for L27 based on design of experiments (DOE) methodology. From the experiments, the vibration response results are recorded in terms of root mean square value for the analysis. Response surface methodology (RSM) is used for identifying the interaction effect of varying process parameters upon the response of vibrations by response surface plot. The rotor-bearing test setup is used for experimentation and is analyzed by using DOE. This study establishes the prediction of fault in the rotor-bearing system in combined parametric effect analysis and its influence with DOE and RSM.


2012 ◽  
Vol 523-524 ◽  
pp. 509-514 ◽  
Author(s):  
Naoya Noguchi ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama ◽  
Keiji Ogawa ◽  
Yutaka Takeda

There have been few reports dealing with the drilling of printed wiring boards (PWBs) with micro-drills that are smaller than 0.2 mm in diameter, and super-high-speed spindles that are higher than 160,000 rpm. In these cases, preventing the micro-drill from breaking and keeping the position accuracy of the drilled hole has been difficult. We therefore focus on the high-speed step-drilling method and short stroke as a novel way of resolving these problems. On the other hand, determining the complicated combination of feed speed, rapid feed speed, and stroke length is difficult. Under these backgrounds, in this report we propose a fast-feed step cycle that use fast-feed command without the processing feed. Thus, we attempted to apply the response surface method to optimize these parameters. As a result, a proposed method was found to be effective to improve the drilled hole quality and drilling efficiency in such kinds of micro-drilling of the PWBs.


Author(s):  
Pravajyoti Patra ◽  
V Huzur Saran ◽  
SP Harsha

The operating clearance in a bearing influences friction, load zone size and fatigue life of a bearing. Hence, an effort is made to investigate the effect of radial internal clearance on the dynamical behavior of a cylindrical roller bearing system with an unbalance present in the system. The differential equations representing the dynamics of the cylindrical roller bearings have been derived using Lagrange’s equations and solved numerically using the fourth-order Runge-Kutta iterative method. The nonlinear vibration signature has been analyzed due to the clearance and the same is represented by various tools like Acceleration-time plots, Poincaré plots and FFT plots. The approximation method is used to calculate the load distribution and deformation of the individual rollers located at a different position in the load zone, for a preloading/interference fit and positive internal clearance. A response surface method is used to analyze the severity involved in the system due to the combined effect of independent variables like rotor speed, radial load, and radial internal clearance. The observations presented here are not only useful to diagnose the bearing health condition with respect to parametric effects but also exhibit their interactive effects on bearing performance.


Author(s):  
P. K. Kankar ◽  
Satish C. Sharma ◽  
S. P. Harsha

In this paper the nonlinear dynamic responses of a rigid rotor supported by ball bearings due to surface waviness of bearing races are analyzed. A mathematical formulation has been derived with consideration of the nonlinear springs and nonlinear damping at the contact points of rolling elements and races, whose stiffnesses are obtained by using Hertzian elastic contact deformation theory. The numerical integration technique Newmark-β with the Newton–Raphson method is used to solve the nonlinear differential equations, iteratively. The effect of bearing running surface waviness on the nonlinear vibrations of rotor bearing system is investigated. The results are mainly presented in time and frequency domains are shown in time-displacement, fast Fourier transformation, and Poincaré maps. The results predict discrete spectrum with specific frequency components for each order of waviness at the inner and outer races, also the excited frequency and waviness order relationships have been set up to prognosis the race defect on these bearing components. Numerical results obtained from the simulation are validated with respect to those of prior researchers.


Sign in / Sign up

Export Citation Format

Share Document