Environmental Analysis of Consumer Products During the Conceptual Phase of Product Design

Author(s):  
Matt R. Bohm ◽  
Karl R. Haapala ◽  
Kerry Poppa ◽  
Robert B. Stone ◽  
Irem Y. Tumer

This paper describes efforts taken to further transition life cycle analysis techniques from the latter, more detailed phases of design, to the early-on conceptual phase of product development. By using modern design methodologies such as automated concept generation and an archive of product design knowledge, known as the Design Repository, virtual concepts are created and specified. Streamlined life cycle analysis techniques are then used to determine the environmental impacts of the virtual concepts. As a means to benchmark the virtual results, analogous real-life products that have functional and component similarities are identified. The identified products are then scrutinized to determine their material composition and manufacturing attributes in order to perform an additional round of life cycle analysis for the actual products. The results of this research show that enough information exists within the conceptual phase of design (utilizing the Design Repository) to reasonably predict the relative environmental impacts of actual products based on virtual concepts.

2010 ◽  
Vol 132 (9) ◽  
Author(s):  
Matt R. Bohm ◽  
Karl R. Haapala ◽  
Kerry Poppa ◽  
Robert B. Stone ◽  
Irem Y. Tumer

This paper describes efforts taken to further transition life cycle assessment techniques from the latter, more detailed phases of design to the early-on conceptual phase of product development. By using modern design methodologies such as automated concept generation and an archive of product design knowledge, known as the Design Repository, virtual concepts are created and specified. Streamlined life cycle assessment techniques are then used to determine the environmental impacts of the virtual concepts. As a means to benchmark the virtual results, analogous real-life products that have functional and component similarities are identified. The identified products are then scrutinized to determine their material composition and manufacturing attributes in order to perform an additional round of life cycle assessment for the actual products. The results of this research show that sufficient information exists within the conceptual phase of design (utilizing the Design Repository) to reasonably predict the relative environmental impacts of actual products based on virtual concepts.


2018 ◽  
Vol 10 (8) ◽  
pp. 2917 ◽  
Author(s):  
José Lozano-Miralles ◽  
Manuel Hermoso-Orzáez ◽  
Carmen Martínez-García ◽  
José Rojas-Sola

The construction industry is responsible for 40–45% of primary energy consumption in Europe. Therefore, it is essential to find new materials with a lower environmental impact to achieve sustainable buildings. The objective of this study was to carry out the life cycle analysis (LCA) to evaluate the environmental impacts of baked clay bricks incorporating organic waste. The scope of this comparative study of LCA covers cradle to gate and involves the extraction of clay and organic waste from the brick, transport, crushing, modelling, drying and cooking. Local sustainability within a circular economy strategy is used as a laboratory test. The energy used during the cooking process of the bricks modified with organic waste, the gas emission concentrate and the emission factors are quantified experimentally in the laboratory. Potential environmental impacts are analysed and compared using the ReCiPe midpoint LCA method using SimaPro 8.0.5.13. These results achieved from this method are compared with those obtained with a second method—Impact 2002+ v2.12. The results of LCA show that the incorporation of organic waste in bricks is favourable from an environmental point of view and is a promising alternative approach in terms of environmental impacts, as it leads to a decrease of 15–20% in all the impact categories studied. Therefore, the suitability of the use of organic additives in clay bricks was confirmed, as this addition was shown to improve their efficiency and sustainability, thus reducing the environmental impact.


Author(s):  
Shraddha Sangelkar ◽  
Daniel A. McAdams

One in every seven Americans has some form of disability. The number of people with disabilities is expected to increase, perhaps significantly, over the foreseeable future. Nevertheless, persons with a disability remain underserved by consumer products. Product designers fail to design universal products primarily due to a lack of knowledge, tools, and experience with universal design. Though challenges to complete access remain, the design of universal architectural systems reflects a better codification of methods, guidelines, and knowledge than available to universal product design. This article reports research efforts to transfer elements of the design knowledge and tools from universal architectural design to universal product design. The research uses the International Classification of Functioning, Disability, and Health to formally describe user function, the Functional Basis to describe product function, and actionfunction diagrams as an analytical framework to explore the interaction between user activity, limitation, and product realization. The comparison of the universal and typical architectural systems reveal relevant design differences in specific parametric realization, morphology, and function. Of these differences, parametric was the most common with functional the least common. The user activities that most frequently result in a design change are reaching followed by maintaining body position. The comparison of architectural systems to consumer products noted a common trend of a functional design change made in result to the user activity of transferring oneself.


Author(s):  
Cari R. Bryant ◽  
Karthik L. Sivaramakrishnan ◽  
Michael Van Wie ◽  
Robert B. Stone ◽  
Daniel A. McAdams

This paper presents a redesign method supporting sustainable design of products. The method correlates product modularity with various life cycle directions at the conceptual stage of design. In the case of product redesign, the modular design approach allows designers to focus on increasing the sustainability of a product in terms of recyclability, disassembly and reduction of resource usage at the conceptual stage. By stepping back to the conceptual design phase and analyzing the product free from its current embodiment solutions, the scope of redesign and the potential product improvement increases. At this stage of design, the comprehension of the relationship between the various life cycle aspects of the product and the product design is essential. The elimination preference index (EPI) metric, calculated by pair-wise comparison of various factors governing the product design, quantifies the effect of redesign alternatives on product sustainability. The method is applied to the redesign of twelve small-scale consumer products, of which one example is presented here. In all cases, the redesigned products exhibited enhancement in modularity and part count reduction.


2018 ◽  
Vol 8 (5) ◽  
pp. 29 ◽  
Author(s):  
Abdelfattah Y. Soliman ◽  
Ali M. Al-Bahi

Most existing educational design approaches focus on discipline-specific modules, while those based on a generic product concept rarely target sustainability goals. With the increasing interest in sustainability and education for sustainable development, it is necessary to rethink the product design approaches to target both customer needs and community requirements for sustainability. The main goal of the integral design approach proposed in the present work is to create a broader picture that integrates the design process, life cycle analysis, and the role of each design and life cycle player. A wider management scheme that sets a clear road map of the contribution of all players is introduced. This scheme is based on a win-win strategy between different players to promote mechanisms to enhance sustainability and min-imize risks and socioeconomic footprints.


Batteries ◽  
2019 ◽  
Vol 5 (2) ◽  
pp. 48 ◽  
Author(s):  
Qiang Dai ◽  
Jarod C. Kelly ◽  
Linda Gaines ◽  
Michael Wang

In light of the increasing penetration of electric vehicles (EVs) in the global vehicle market, understanding the environmental impacts of lithium-ion batteries (LIBs) that characterize the EVs is key to sustainable EV deployment. This study analyzes the cradle-to-gate total energy use, greenhouse gas emissions, SOx, NOx, PM10 emissions, and water consumption associated with current industrial production of lithium nickel manganese cobalt oxide (NMC) batteries, with the battery life cycle analysis (LCA) module in the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model, which was recently updated with primary data collected from large-scale commercial battery material producers and automotive LIB manufacturers. The results show that active cathode material, aluminum, and energy use for cell production are the major contributors to the energy and environmental impacts of NMC batteries. However, this study also notes that the impacts could change significantly, depending on where in the world the battery is produced, and where the materials are sourced. In an effort to harmonize existing LCAs of automotive LIBs and guide future research, this study also lays out differences in life cycle inventories (LCIs) for key battery materials among existing LIB LCA studies, and identifies knowledge gaps.


Author(s):  
Cesare Castellini ◽  
Antonio Boggia ◽  
Luisa Paolotti ◽  
Greg J. Thoma ◽  
Dae-soo Kim

Author(s):  
H.S. Matthews ◽  
F. McMichael ◽  
L. Lave ◽  
H. MacLean

Sign in / Sign up

Export Citation Format

Share Document