scholarly journals Comparative Study on the Environmental Impact of Traditional Clay Bricks Mixed with Organic Waste Using Life Cycle Analysis

2018 ◽  
Vol 10 (8) ◽  
pp. 2917 ◽  
Author(s):  
José Lozano-Miralles ◽  
Manuel Hermoso-Orzáez ◽  
Carmen Martínez-García ◽  
José Rojas-Sola

The construction industry is responsible for 40–45% of primary energy consumption in Europe. Therefore, it is essential to find new materials with a lower environmental impact to achieve sustainable buildings. The objective of this study was to carry out the life cycle analysis (LCA) to evaluate the environmental impacts of baked clay bricks incorporating organic waste. The scope of this comparative study of LCA covers cradle to gate and involves the extraction of clay and organic waste from the brick, transport, crushing, modelling, drying and cooking. Local sustainability within a circular economy strategy is used as a laboratory test. The energy used during the cooking process of the bricks modified with organic waste, the gas emission concentrate and the emission factors are quantified experimentally in the laboratory. Potential environmental impacts are analysed and compared using the ReCiPe midpoint LCA method using SimaPro 8.0.5.13. These results achieved from this method are compared with those obtained with a second method—Impact 2002+ v2.12. The results of LCA show that the incorporation of organic waste in bricks is favourable from an environmental point of view and is a promising alternative approach in terms of environmental impacts, as it leads to a decrease of 15–20% in all the impact categories studied. Therefore, the suitability of the use of organic additives in clay bricks was confirmed, as this addition was shown to improve their efficiency and sustainability, thus reducing the environmental impact.

2021 ◽  
Vol 12 (5) ◽  
pp. 6504-6515

With the development of additive manufacturing technology, 3D bone tissue engineering scaffolds have evolved. Bone tissue engineering is one of the techniques for repairing bone abnormalities caused by a variety of circumstances, such as injuries or the need to support damaged sections. Many bits of research have gone towards developing 3D bone tissue engineering scaffolds all across the world. The assessment of the environmental impact, on the other hand, has received less attention. As a result, the focus of this study is on developing a life cycle assessment (LCA) model for 3D bone tissue engineering scaffolds and evaluating potential environmental impacts. One of the methodologies to evaluating a complete environmental impact assessment is life cycle assessment (LCA). The cradle-to-grave method will be used in this study, and GaBi software was used to create the analysis for this study. Previous research on 3D bone tissue engineering fabrication employing poly(ethylene glycol) diacrylate (PEGDA) soaked in dimethyl sulfoxide (DMSO), and diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide (TPO) as a photoinitiator will be reviewed. Meanwhile, digital light processing (DLP) 3D printing is employed as the production technique. The GaBi program and the LCA model developed to highlight the potential environmental impact. This study shows how the input and output of LCA of 3D bone tissue engineering scaffolds might contribute to environmental issues such as air, freshwater, saltwater, and industrial soil emissions. The emission contributing to potential environmental impacts comes from life cycle input, electricity and transportation consumption, manufacturing process, and material resources. The results from this research can be used as an indicator for the researcher to take the impact of the development of 3D bone tissue engineering on the environment seriously.


2018 ◽  
Vol 74 ◽  
pp. 11003
Author(s):  
Andreas Pramudianto

Basically each product or service has its own life cycle. Life Cycle Analysis Method can be used to assess the impact of an activity both production and service activities. Environmental Impact Assessment (EIA) or Analisis Mengenai Dampak Lingkungan (AMDAL) is one of the activities that must be fulfilled in order to obtain an environmental permit. EIA activities have a life cycle process that needs to be known and understood so that environmental permits can be obtained. Therefore this study aims to find out the use of the LCA method in EIA procedures. In addition, with the LCA method, EIA activities are expected to be well studied according to the function of this service. LCA can provide to reduce the least impact from environmental damage. This research will be useful for the development of environmental science, especially related to the study of environmental impacts, especially EIA. It is expected that the results of the study will provide a complete picture of the relevance of the LCA method with EIA and the benefits that can be taken. The results of this study will be an important recommendation for decision makers regarding the importance of EIA in development, especially sustainable development through the method used, namely LCA.


2005 ◽  
Vol 895 ◽  
Author(s):  
Antonia Moropoulou ◽  
Christopher Koroneos ◽  
Maria Karoglou ◽  
Eleni Aggelakopoulou ◽  
Asterios Bakolas ◽  
...  

AbstractOver the years considerable research has been conducted on masonry mortars regarding their compatibility with under restoration structures. The environmental dimension of these materials may sometimes be a prohibitive factor in the selection of these materials. Life Cycle Assessment (LCA) is a tool that can be used to assess the environmental impact of the materials. LCA can be a very useful tool in the decision making for the selection of appropriate restoration structural material. In this work, a comparison between traditional type of mortars and modern ones (cement-based) is attempted. Two mortars of traditional type are investigated: with aerial lime binder, with aerial lime and artificial pozzolanic additive and one with cement binder. The LCA results indicate that the traditional types of mortars are more sustainable compared to cementbased mortars. For the impact assessment, the method used is Eco-indicator 95


Author(s):  
Mostafa Sabbaghi ◽  
Sara Behdad

Consumers might be willing to repair their broken devices as long as the associated repair costs do not exceed an undesirable threshold. However, in many cases the technological obsolescence actuates consumers to retire old devices and replace them with new ones rather than extending the product lifecycle through repair. In this paper, we aim to investigate the impact of components’ deterioration profiles and consumers’ repair decisions on the lifespan of devices, and then assesse the anticipated life cycle environmental impacts. A Monte Carlo simulation is developed to estimate the life cycle characteristics such as the average lifespan, the number of failed components’ replacement, and the total repair cost per cycle for a laptop computer. The lifecycle characteristics estimated from simulation model further have been used in a Life Cycle Assessment (LCA) study to quantify the environmental impact associated with different design scenarios. The results reveal the impact of product design as well as consumers’ repair decisions on the product lifespan and the corresponding environmental impacts.


2021 ◽  
Vol 2 (2) ◽  
pp. 146-154
Author(s):  
Zoltán Korényi

Összefoglaló. A dolgozat témája a különböző erőműfajták életciklusra vonatkozó fajlagos anyagigényének a vizsgálata. Az elemzések a nemzetközi szakirodalmi források felhasználásával történtek. Módszere, a bázisadatok elemzése, majd az anyagigényeknek az erőmű beépített teljesítményére és az életciklus alatt megtermelt villamosenergiára vonatkoztatott fajlagos értékek meghatározása. Az eredmények azt mutatják, hogy a nap- és szélerőművek elterjedésével a hagyományos erőművek által felhasznált fosszilis energiaforrások (pl. a szén) bent maradnak ugyan a földben, de cserébe az új technológia legyártásához a hagyományos anyagokból (beton, acél, alumínium, réz stb.) fajlagosan jóval nagyobb mennyiségekre lesz szükség. Emellett megnő a ritkán előforduló fémek (gallium, indium stb.) felhasználása, ami Európában, a lelőhelyek hiányában, új kockázatokkal jár. Summary. The topic of the study is to determine the material use of different power plant types. This is a part of the known life cycle analysis (LCA). The aim of LCA is to determine the impact of human activity on nature. The procedure is described in the standards (ISO 14040/41/42/42). Under environmental impact we mean changes in our natural environment, air, water, soil pollution, noise and impacts on human health. In the LCA, the environmental impact begins with the opening of the mine, continues with the extraction and processing of raw materials, and then with the production of equipment, construction and installation of the power plant. This is followed by the commissioning and then operation of the power plants for 20-60 years, including maintenance. The cycle ends with demolition, which is followed by recycling of materials. The remaining waste is disposed of. This is the complex content of life cycle analysis. Its purpose is to determine the ecological footprint of man. The method of the present study is to isolate a limited area from the complex LCA process. This means determining the amount of material needed to build different power plants, excluding mining and processing of raw materials. Commercially available basic materials are built into the power plant’s components. The research is based on the literature available in the international area. The author studied these sources, analysed the data, and checked the authenticity. It was not easy because the sources from different times, for different power plants showed a lot of uncertainty. In overcoming the uncertainties, it was a help that the author has decades of experience in the realisation of power plants. It was considered the material consumption related to the installed electricity capacity of the power plant (tons/MW) as basic data. The author then determined the specific material consumptions, allocated to the electric energy generated during the lifetime, in different power plants. The calculation is carried out with the help of the usual annual peak load duration hours and the usual lifetime of the power plants. The results show that with the spread of solar and wind energy, the fossil energy sources previously needed for conventional power plants will remain inside the Earth, but in exchange for the production of new technological equipment from traditional structural materials (concrete, steel, aluminium, copper and plastic), the special need multiplies. If we compare the power plants using renewable energy with the electric energy produced during the life cycle of a nuclear power plant, the specific installed material requirement of a river hydropower plant is 37 times, that of an onshore wind farm it is 9.6 times, and that of an outdoor solar power park is 6.6 times higher. Another important difference is that wind turbines, solar panels and batteries also require rare materials that do not occur in Europe (e.g. gallium, indium, yttrium, neodymium, cobalt, etc.). This can lead to security risks in Europe in the long run.


Author(s):  
José Adolfo Lozano-Miralles ◽  
Manuel Jesús Hermoso-Orzáez ◽  
Carmen Martínez-García ◽  
José Ignacio Rojas-Sola

The construction industry is responsible for 40 to 45% of primary energy consumption in Europe alone. Therefore, it is essential to find new materials with a lower environmental impact in order to attain sustainable housing. This study aims to determine and compare the environmental impact of two clay samples forming a basis for the manufacture of traditional brick, a standard material in building construction; traditional red clay brick and a brick based on clay mixed with a biological ingredient.  The samples of fired clay were manufactured at the laboratory scale, the results being valid exclusively as indicators for the extrapolation of the analysis to other studies. The results of the environmental impact of these formulations have been examined through an evaluation of life-cycle analysis (LCA), observing that the incorporation of biological pore forming agents led to a decrease of around 15 to 20% of all impact categories studied. Thus, the suitability of using biological-based additives in clay bricks was confirmed both for their constructive characteristics (lighter material) and increased energy efficiency (better thermal insulation) considering the environmental point of view.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2242
Author(s):  
Kledja Canaj ◽  
Domenico Morrone ◽  
Rocco Roma ◽  
Francesca Boari ◽  
Vito Cantore ◽  
...  

The agricultural sector in the Mediterranean region, is increasingly using reclaimed water as an additional source for irrigation. However, there is a limited number of case studies about product-based life cycle analysis to ensure that the overall benefits of reclaimed water do indeed outweigh the impacts. The Life Cycle Assessment (LCA) and Life Cycle Costing (LCC) methods are used in this study to investigate the environmental impacts and costs of vineyard cropping systems when tertiary reclaimed water is used as a supplementary source of irrigation water (integrated system). The conventional production system utilizing 100% groundwater was used as a reference system. As a proxy for sustainability, eco-efficiency, which combines economic and environmental performance, was assessed. The LCA revealed that the integrated system could reduce the net environmental impact by 23.8% due to lower consumption of irrigation water (−50%), electricity (−27.7%), and chemical fertilizers (−22.6%). Nevertheless, trade-offs between economics and the environment occurred as an integrated system is associated with higher life cycle costs and lower economic returns due to lower crop yield (−9.1%). The combined eco-efficiency assessment (ratio of economic value added to total environmental impact) revealed that the integrated system outperformed in terms of eco-efficiency by 12.6% due to lower environmental impacts. These results confirmed that reclaimed water could help to ensure an economically profitable yield with net environmental benefits. Our results provided an up-to-date and consistent life cycle analysis contributing to the creation of a valuable knowledge base for the associated costs and benefits of vineyard cultivation with treated wastewater.


Author(s):  
S. Boughrara ◽  
M. Chedri ◽  
K. Louhab

The aim of this study is the use of Life Cycle Assessment, to evaluate the impact generated by cement manufactory situated in Sour EL Ghozlane town in Algeria country, which use the dry process to produce cement Portland. The LCA method is used for compiling and examining the inputs and outputs of energy, raw material and environmental impacts directly attributable to the manufacture and functioning of a product throughout its life. It is also used to determine element and energy contributing to each impact evaluated. Potentials impacts are evaluated using the SimaProV.7.1 software and IMPACT2000+ method in this study.


Author(s):  
Francisco Javier Flor-Montalvo ◽  
Emilio Jiménez-Macías ◽  
Mercedes Pérez de la Parte ◽  
Juan-Ignacio Latorre-Biel ◽  
Eduardo Martínez-Cámara ◽  
...  

"In the process of red wine aging, the barrel plays a fundamental role both in the contribution of aromas and in the stabilization of the wine and its color. There are, however, different types of barrels, depending on materials, species and origin of the oak, morphology and geometry, and capacity (from 225 liters to larger formats of 300 and 500 liters). The purpose of this work is to perform the Life Cycle Assessment (LCA) of these barrel formats and compare them with the 225-liter Bordeaux barrel, providing detailed information on these products that can serve as a reference for their use in the calculation of the impact of its application in the wine aging processes. We will consider, for the realization of the present LCA, all the phases of process and manufacture of the barrel that cover from the contribution of materials and their processing until the final storage."


2021 ◽  
Vol 11 (3) ◽  
pp. 1160
Author(s):  
Antonella Accardo ◽  
Giovanni Dotelli ◽  
Marco Luigi Musa ◽  
Ezio Spessa

This paper presents the results of an environmental assessment of a Nickel-Manganese-Cobalt (NMC) Lithium-ion traction battery for Battery Electric Light-Duty Commercial Vehicles (BEV-LDCV) used for urban and regional freight haulage. A cradle-to-grave Life Cycle Inventory (LCI) of NMC111 is provided, operation and end-of-life stages are included, and insight is also given into a Life Cycle Assessment of different NMC chemistries. The environmental impacts of the manufacturing stages of the NMC111 battery are then compared with those of a Sodium-Nickel-Chloride (ZEBRA) battery. In the second part of the work, two electric-battery LDCVs (powered with NMC111 and ZEBRA batteries, respectively) and a diesel urban LDCV are analysed, considering a wide set of environmental impact categories. The results show that the NMC111 battery has the highest impacts from production in most of the impact categories. Active cathode material, Aluminium, Copper, and energy use for battery production are the main contributors to the environmental impact. However, when vehicle application is investigated, NMC111-BEV shows lower environmental impacts, in all the impact categories, than ZEBRA-BEV. This is mainly due to the greater efficiency of the NMC111 battery during vehicle operation. Finally, when comparing BEVs to a diesel LDCV, the electric powertrains show advantages over the diesel one as far as global warming, abiotic depletion potential-fossil fuels, photochemical oxidation, and ozone layer depletion are concerned. However, the diesel LDCV performs better in almost all the other investigated impact categories.


Sign in / Sign up

Export Citation Format

Share Document