Study of the Flow Over Wind Turbine Blade

Author(s):  
R. S. Amano ◽  
R. J. Malloy

Recently there has been an increase in the demand for the utilization of clean renewable energy sources. This is a direct result of the volatility in oil prices and an increased awareness of human induced climate change. Wind energy has been shown to be one of the most promising sources of renewable energy. With current technology, the low cost of wind energy is competitive with more conventional sources of energy such as coal. Most blades available for commercial grade wind turbines incorporate a straight span-wise profile and airfoil shaped cross sections. These blades are found to be very efficient at lower wind speeds in comparison to the potential energy that can be extracted. However as the oncoming wind speed increases the efficiency of the blades decreases as they approach a stall point. This paper explores the possibility of increasing the efficiency of the blades at higher wind speeds while maintaining efficiency at the lower wind speeds. The design intends to maintain efficiency at lower wind speeds by selecting the appropriate orientation and size of the airfoil cross sections based on a low oncoming wind speed and given constant rotation rate. The blades will be made more efficient at higher wind speeds by implementing a swept blade profile. The torque generated from a blade using only the first optimization technique is compared to that generated from a blade using both techniques as well as that generated by NTK500/41 turbine using LM19.1 blades. Performance will be investigated using the computational fluid dynamics (CFD).

Author(s):  
R. S. Amano ◽  
Ryan J. Malloy

Recently there has been an increase in the demand for the utilization of clean renewable energy sources. This is a direct result of a rise in oil prices and an increased awareness of human induced climate change. Wind energy has been shown to be one of the most promising sources of renewable energy. With current technology, the low cost of wind energy is competitive with more conventional sources of energy such as coal. This however is only true in areas of high wind density. These areas are not as abundant and therefore the number of profitable sites is limited. This paper explores the possibility increasing the number of profitable sites by optimizing wind turbine blade design for low wind speed areas. The two methods of optimization that are investigated are first, optimizing the angle of attack and chord length for a given airfoil cross section at different positions along the blade and second implementing a swept blade profile. The torque generated from a blade using only the first optimization technique is compared to that generated from a blade using both techniques as well as that generated by NTK500/41 turbine using LM19.1 blades. Performance will be investigated using the CFD solver FLUENT.


2014 ◽  
Vol 986-987 ◽  
pp. 1291-1295
Author(s):  
Chang Wei Ji ◽  
Min Li

In the high altitude, solar energy, biomass energy and wind energy are widely available and renewable energy sources. It will improve the region's living levels at high altitude and the ecological environment when developed efficiently and in low cost. Making full use of renewable natural resources is of great value and significance to sustain the development of high-altitude areas of the economy. This paper is a kind of research and study, which based on new energy and aims at making full use of solar energy, wind energy, biomass energy complementary relationship and physical changes between planting and breeding to improve the renewable energy industry, integrated, modular for the high altitude area residents gathered .


INFO-TEKNIK ◽  
2018 ◽  
Vol 19 (2) ◽  
pp. 195
Author(s):  
Arif Rochman Fachrudin

Potential and utilization of renewable energy in Indonesia is still very small. Oneof the renewable energy sources is wind energy. The use of wind turbines, windenergy is converted into mechanical energy and can then generate electricitythrough a generator. Wind turbines are environmentally friendly, inexpensive,easy to operate and easy to maintain. The purpose of this study was to determinethe effect on the performance of the number of blades and wind speed for thevertical axis wind turbine type darrieus H with the NACA profile 3412 with apitch 0o angle. This study uses an experimental method, with a number of bladesand varying wind speeds. The number of blades given is 2 units, 3 units and 4units. The speed of the given wind is 3.3 m / s, 3.5 m / s, 3.7 m / s, and 3.9 m / s.Performance is obtained from the electrical power produced by a generatormounted on the turbine axis. The results showed that the turbine performance wasinfluenced by the number of blades. The highest power in the number of bladeswas 4 units at a wind speed of 3.3 m / s which resulted in electric power of 5.166Watt. The lowest electric power is produced on turbines with a number of units of2 units at a wind speed of 3.3 m / s, which is 3.0173 Watts. The blade is 2 unitsand 3 units, at a wind speed of 3.3 m / s; 3.5 m / s; 3.7 m / s and 3.9 m / s, theelectrical power produced is relatively the same, while in blades 4 units, thedifference in wind speed (3.3 m / s; 3.5 m / s; 3.7 m / s and 3.9 m / s) produce adifference in the electrical power produced


Author(s):  
Hasan Huseyin Yildirim ◽  
Mehmet Yavuz

Countries aiming for sustainability in economic growth and development ensure the reliability of energy supplies. For countries to provide their energy needs uninterruptedly, it is important for domestic and renewable energy sources to be utilised. For this reason, the supply of reliable and sustainable energy has become an important issue that concerns and occupies mankind. Of the renewable energy sources, wind energy is a clean, reliable and inexhaustible source of energy with low operating costs. Turkey is a rich nation in terms of wind energy potential. Forecasting of investment efficiency is an important issue before and during the investment period in wind energy investment process because of high investment costs. It is aimed to forecast the wind energy products monthly with multilayer neural network approach in this study. For this aim a feed forward back propagation neural network model has been established. As a set of data, wind speed values 48 months (January 2012-December 2015) have been used. The training data set occurs from 36 monthly wind speed values (January 2012-December 2014) and the test data set occurs from other values (January-December 2015). Analysis findings show that the trained Artificial Neural Networks (ANNs) have the ability of accurate prediction for the samples that are not used at training phase. The prediction errors for the wind energy plantation values are ranged between 0.00494-0.015035. Also the overall mean prediction error for this prediction is calculated as 0.004818 (0.48%). In general, we can say that ANNs be able to estimate the aspect of wind energy plant productions.


Author(s):  
Surendra Singh Dua, Dr. Ruchi Sharma

Renewable energy sources are becoming more common in the energy generation field these days. Renewable energy sources such as photovoltaic (PV) systems, wind power (WP), and biomass are gaining popularity due to their ease of use, low cost, and low environmental impact. The environmental issues, declining fuel supplies, and increasing energy demands have drawn our attention to the glimmer of hope for a future focused entirely on sustainable and non-polluting energy sources. Photovoltaic (PV) power generation is becoming more common in comparison to other renewable energy sources due to advantages such as ease of access, low cost, low environmental emissions, and lower maintenance costs. In this dissertation, three separate Maximum power point monitoring techniques are used to construct a solar PV system (MPPT). Modeling and simulation using the MATLAB Simulink programmeare being used to check the effectiveness of the proposed scheme. The model is investigated using two partial shading patterns. By providing different values of input radiations to all four modules connected in sequence, we were able to create partial shading conditions using the PV array block. The panel's output is fed to the optimization technique block, which then feeds the boost converter from their duty cycle output. Under partial shading, the results show that the Particle Swarm Optimization algorithm outperforms the Perturb and Observe and Incremental Conductance algorithms..


Author(s):  
S. G. Ignatiev ◽  
S. V. Kiseleva

Optimization of the autonomous wind-diesel plants composition and of their power for guaranteed energy supply, despite the long history of research, the diversity of approaches and methods, is an urgent problem. In this paper, a detailed analysis of the wind energy characteristics is proposed to shape an autonomous power system for a guaranteed power supply with predominance wind energy. The analysis was carried out on the basis of wind speed measurements in the south of the European part of Russia during 8 months at different heights with a discreteness of 10 minutes. As a result, we have obtained a sequence of average daily wind speeds and the sequences constructed by arbitrary variations in the distribution of average daily wind speeds in this interval. These sequences have been used to calculate energy balances in systems (wind turbines + diesel generator + consumer with constant and limited daily energy demand) and (wind turbines + diesel generator + consumer with constant and limited daily energy demand + energy storage). In order to maximize the use of wind energy, the wind turbine integrally for the period in question is assumed to produce the required amount of energy. For the generality of consideration, we have introduced the relative values of the required energy, relative energy produced by the wind turbine and the diesel generator and relative storage capacity by normalizing them to the swept area of the wind wheel. The paper shows the effect of the average wind speed over the period on the energy characteristics of the system (wind turbine + diesel generator + consumer). It was found that the wind turbine energy produced, wind turbine energy used by the consumer, fuel consumption, and fuel economy depend (close to cubic dependence) upon the specified average wind speed. It was found that, for the same system with a limited amount of required energy and high average wind speed over the period, the wind turbines with lower generator power and smaller wind wheel radius use wind energy more efficiently than the wind turbines with higher generator power and larger wind wheel radius at less average wind speed. For the system (wind turbine + diesel generator + energy storage + consumer) with increasing average speed for a given amount of energy required, which in general is covered by the energy production of wind turbines for the period, the maximum size capacity of the storage device decreases. With decreasing the energy storage capacity, the influence of the random nature of the change in wind speed decreases, and at some values of the relative capacity, it can be neglected.


2014 ◽  
Vol 10 (1) ◽  
pp. 38-45
Author(s):  
Angel Terziev ◽  
Ivan Antonov ◽  
Rositsa Velichkova

Abstract Increasing the share of renewable energy sources is one of the core policies of the European Union. This is because of the fact that this energy is essential in reducing the greenhouse gas emissions and securing energy supplies. Currently, the share of wind energy from all renewable energy sources is relatively low. The choice of location for a certain wind farm installation strongly depends on the wind potential. Therefore the accurate assessment of wind potential is extremely important. In the present paper an analysis is made on the impact of significant possible parameters on the determination of wind energy potential for relatively large areas. In the analysis the type of measurements (short- and long-term on-site measurements), the type of instrumentation and the terrain roughness factor are considered. The study on the impact of turbulence on the wind flow distribution over complex terrain is presented, and it is based on the real on-site data collected by the meteorological tall towers installed in the northern part of Bulgaria. By means of CFD based software a wind map is developed for relatively large areas. Different turbulent models in numerical calculations were tested and recommendations for the usage of the specific models in flows modeling over complex terrains are presented. The role of each parameter in wind map development is made. Different approaches for determination of wind energy potential based on the preliminary developed wind map are presented.


Author(s):  
Kazutoshi Matsuda ◽  
Kusuo Kato ◽  
Kouki Arise ◽  
Hajime Ishii

According to the results of conventional wind tunnel tests on rectangular cross sections with side ratios of B/D = 2–8 (B: along-wind length (m), D: cross-wind length (m)), motion-induced vortex excitation was confirmed. The generation of motion-induced vortex excitation is considered to be caused by the unification of separated vortices from the leading edge and secondary vortices at the trailing edge [1]. Spring-supported test for B/D = 1.18 was conducted in a closed circuit wind tunnel (cross section: 1.8 m high×0.9 m wide) at Kyushu Institute of Technology. Vibrations were confirmed in the neighborhoods of reduced wind speeds Vr = V/fD = 2 and Vr = 8 (V: wind speed (m/s), f: natural frequency (Hz)). Because the reduced wind speed in motion-induced vortex excitation is calculated as Vr = 1.67×B/D = 1.67×1.18 = 2.0 [1], vibrations around Vr = 2 were considered to be motion-induced vortex excitation. According to the smoke flow visualization result for B/D = 1.18 which was carried out by the authors, no secondary vortices at the trailing edge were formed, although separated vortices from the leading edge were formed at the time of oscillation at the onset wind speed of motion-induced vortex excitation, where aerodynamic vibrations considered to be motion-induced vortex excitation were confirmed. It was suggested that motion-induced vortex excitation might possibly occur in the range of low wind speeds, even in the case of side ratios where secondary vortices at trailing edge were not confirmed. In this study, smoke flow visualizations were performed for ratios of B/D = 0.5–2.0 in order to find out the relation between side ratios of rectangular cross sections and secondary vortices at trailing edge in motion-induced vortex excitation. The smoke flow visualizations around the model during oscillating condition were conducted in a small-sized wind tunnel at Kyushu Institute of Technology. Experimental Reynolds number was Re = VD/v = 1.6×103. For the forced-oscillating amplitude η, the non-dimensional double amplitudes were set as 2η/D = 0.02–0.15. Spring-supported tests were also carried out in order to obtain the response characteristics of the models.


2010 ◽  
Vol 64 (4) ◽  
pp. 283-293 ◽  
Author(s):  
Zlatica Predojevic

The use of renewable energy sources (biofuels), either as a component in the conventional fossil fuels, gasoline and diesel, or as a pure biofuel, contributes to energy saving and decrease of total CO2 emission. The use of bioethanol mixed with gasoline significantly decreases gasoline consumption and contributes to environment protection. One of the problems in the production of bioethanol is the availability of sugar and starch based feedstock used for its production. However, lignocellulosic feedstocks are becoming more significant in the production of bioethanol due to their availability and low cost. The aim of this study is to point out the advantages and shortcomings of pretreatment processes and hydrolyses of lignocellulosic feedstocks that precede their fermentation to bioethanol.


To make micro grid with renewable energy and to over come the technical challenges and economy base and policy and regulatory challenges . From the natural wastage we can generate the Electricity. Thus, the Electrical Power or Electricity is available with a low cost and pollution free to anyplace in the world at all times. This process divulge a unequaled step in electricity generation and this type of generation is maintain the ecological balance. We can have an uninterrupted power supply irrespective of the natural condition without any kind of environmental pollution. More influence this process relent the less production cost for electricity generation. Micro grids have long been used in remote areas to power off-grid villages, military operations or industrial projects. But increasingly they are being used in cities or towns, in urban centers. Here we try a proto type of micro grid with renewable energy sources.


Sign in / Sign up

Export Citation Format

Share Document