Aerodynamic Design Exploration for Reusable Launch Vehicle Using Multi-Objective Genetic Programming

Author(s):  
Tomoaki Tatsukawa ◽  
Taku Nonomura ◽  
Akira Oyama ◽  
Kozo Fujii

A new type of multi-objective genetic programming (MOGP) for design exploration is proposed. The feature of the new MOGP is the simultaneous symbolic regression to multiple variables using correlation coefficients. This methodology is applied to Pareto-optimal solutions of the multi-objective aerodynamic design optimization problem of a bi-conical shape reusable launch vehicle. The MOGP presents symbolic equations which have high correlations to zero-lift drag at supersonic condition, maximum lift-to-drag at supersonic condition and volume of shape through single MOGP run. These equations also have high correlation to another parameter of the body geometry. These results indicate that MOGP is capable of finding composite more efficient design parameters from original design parameters.

Author(s):  
Yuri I. Biba ◽  
Zheji Liu ◽  
D. Lee Hill

A complete effort to redesign the aerodynamic characteristics of a single-stage pipeline compressor is presented. The components addressed are the impeller, diffuser region, and the volute. The innovation of this effort stems from the simultaneous inclusion of both the noise and aerodynamic performance as primary design parameters. The final detailed flange-to-flange analysis of the new components clearly shows that the operating range is extended and the tonal noise driven by the impeller is reduced. This is accomplished without sacrificing the existing high efficiency of the baseline machine. The body of the design effort uses both Computational Fluid Dynamics (CFD) and vibro-acoustics technology. The predictions are anchored by using the flange-to-flange analysis of the original design and its experimental performance data. By calculating delta corrections and assuming that these deltas are approximately the same for the new design, the expected performance is extrapolated.


2020 ◽  
Vol 08 (01) ◽  
pp. 33-48
Author(s):  
S. Mathavaraj ◽  
Radhakant Padhi

A nonlinear robust control design approach is presented in this paper for a prototype reusable launch vehicle (RLV) during the critical re-entry phase where the margin for error is small. A nominal control is designed following the dynamic inversion philosophy for the reaction control system (RCS) and optimal dynamic inversion philosophy for the aerodynamic control actuation. This nominal controller is augmented next with a barrier Lyapunov function based neuro-adaptive control in the inner loop, which enforces the body rates of the actual system i.e. in presence of uncertainties to track the closed-loop body rates of the nominal plant. A fusion logic is also presented for fusing the RCS and aerodynamic control. The control design approach presented here assures robust tracking of the guidance commands despite the presence of uncertainties in the plant model. Extensive nonlinear six degree-of-freedom (DoF) simulation study, which embeds additional practical constraints such as actuator delay in the aerodynamic control actuation and constraints related to the RCS, shows that the proposed design approach has both good command following as well as robustness characteristics.


2006 ◽  
Vol 43 (3) ◽  
pp. 832-836 ◽  
Author(s):  
Kazuhisa Chiba ◽  
Shigeru Obayashi ◽  
Kazuhiro Nakahashi

2011 ◽  
Vol 101-102 ◽  
pp. 697-701
Author(s):  
Zhong Quan Guo ◽  
Jian Xia Liu ◽  
Wen Cai Luo

Aerodynamic design of launch vehicle is facing combinatorial explosion problem caused by modular design. In order to get basic feasible solution from huge design space, the efficiency of design and simulation must be improved. In this paper, a parametric modeling and simulation method is proposed, which is based on CAD/CFD tools. Firstly, the design Variables of the launch vehicle are divided into three categories: size parameters, configuration parameters and mesh parameters. Secondly, parametric geometry model, including size and configuration parameters, is obtained by secondary development of Pro/ENGINEER. Thirdly, parametric mesh files for CFD are generated by implementing CFD-GEOM with scripts written in Python. By specifying boundary conditions through command stream of GAMBIT, FLUENT software will run automatically to calculate the aerodynamic performance of the launch vehicle. Finally, a graphical user interface (GUI) is developed using VC++6.0. With this system, the integration of CAD/CFD application is achieved. As long as designers enter certain design parameters in the GUI, they will quickly achieve 3D geometry model and aerodynamic performance of the launch vehicle. Application examples show that, this system can significantly improve the efficiency of aerodynamic design of the launch vehicle, and the data error between simulation and experiment is less than 10%, which is acceptable.


2012 ◽  
Vol 479-481 ◽  
pp. 2577-2581
Author(s):  
Wen Bin Hou ◽  
Zhen Jun Bi ◽  
Hong Zhe Zhang ◽  
Ping Hu

In order to get the optimistic structure property and design parameters of a car body, the system of vehicle body concept design (VCD-ICAE) was developed by us to make the body design in the conceptual phase in the paper. It can build parametric geometry modeling and FEM model of body-in-white (BIW) automatically, and the structural stiffness was calculated. Based on the former model, a multi-objective optimization of the total body was designed to afford the reasonable parameters for detailed model of BIW, which realized lightweight of the whole body and high stiffness. In the paper, the total theory and flowchart of vehicle body concept design were afforded. An example with real body’s data was shown to prove the validity of the multi-objective optimization module in VCD-ICAE system. Finally, the optimal design scheme of the body was provided.


2019 ◽  
Author(s):  
R.W. Blair ◽  
N.J. Dunne ◽  
A.B. Lennon ◽  
G.H. Menary

AbstractCoronary stents for treating atherosclerosis are traditionally manufactured from metallic alloys. However, metal stents permanently reside in the body and may trigger undesirable immunological responses. Bioresorbable polymer stents can provide a temporary scaffold that resorbs once the artery heals but are mechanically inferior, requiring thicker struts for equivalent radial support, which may increase thrombosis risk. This study addresses the challenge of designing mechanically effective but sufficiently thin poly(L-lactic acid) stents through a computational approach that optimises material properties and stent geometry. Forty parametric stent designs were generated: cross-sectional area (post-dilation), foreshortening, stent-to-artery ratio and radial collapse pressure were evaluated computationally using finite element analysis. Response surface methodology was used to identify performance trade-offs by formulating relationships between design parameters and response variables. Multi-objective optimisation was used to identify suitable stent designs from approximated Pareto fronts and an optimal design is proposed that offers comparable performance to designs in clinical practice. In summary, a computational framework has been developed that has potential application in the design of high stiffness, thin strut polymeric stents that contend with the performance of their metallic counterparts.


Sign in / Sign up

Export Citation Format

Share Document