Vibration Control of 2DOF Structures Utilizing Sloshing in Square Tanks

Author(s):  
Takashi Ikeda ◽  
Yuji Harata ◽  
Shota Ninomiya

This paper investigates the vibration control of a tower-like structure utilizing a square tuned liquid damper (TLD) when the structure is subjected to horizontal, harmonic excitation. In the theoretical analysis, when the tuning condition, 1:1:1:1, is satisfied, the natural frequencies of the 2DOF structure and two predominate sloshing modes are nearly equal. Galerkin’s method is used to derive the modal equations of motion for sloshing. The nonlinearity of the hydrodynamic force due to sloshing is considered in the equations of motion for the 2DOF structure. Linear viscous damping terms are incorporated into the modal equations to consider the damping effect of sloshing. Van der Pol’s method is employed to determine the frequency response curves which are compared to the numerical simulation. The influences of the excitation frequency, the tank installation angle, and the aspect ratio of the tank cross-section on the response curves are examined. The theoretical results show that whirling motions and amplitude modulated motions (AMMs) including chaotic motions may occur in the structure because swirl motions and Hopf bifurcations followed by AMMs appear in the tank. It is also found that square TLDs work more efficiently than conventional rectangular TLDs, and its performance is further improved when the aspect ratio is slightly increased and the installation angle is equal to zero. Experiments were conducted in order to confirm the validity of the theoretical results.

Author(s):  
Takashi Ikeda ◽  
Yuji Harata ◽  
Shota Ninomiya

This paper investigates the vibration control of a towerlike structure with degrees of freedom utilizing a square or nearly square tuned liquid damper (TLD) when the structure is subjected to horizontal, harmonic excitation. In the theoretical analysis, when the two natural frequencies of the two-degree-of-freedom (2DOF) structure nearly equal those of the two predominant sloshing modes, the tuning condition, 1:1:1:1, is nearly satisfied. Galerkin's method is used to derive the modal equations of motion for sloshing. The nonlinearity of the hydrodynamic force due to sloshing is considered in the equations of motion for the 2DOF structure. Linear viscous damping terms are incorporated into the modal equations to consider the damping effect of sloshing. Van der Pol's method is employed to determine the expressions for the frequency response curves. The influences of the excitation frequency, the tank installation angle, and the aspect ratio of the tank cross section on the response curves are examined. The theoretical results show that whirling motions and amplitude-modulated motions (AMMs), including chaotic motions, may occur in the structure because swirl motions and Hopf bifurcations, followed by AMMs, appear in the tank. It is also found that a square TLD works more effectively than a conventional rectangular TLD, and its performance is further improved when the tank width is slightly increased and the installation angle is equal to zero. Experiments were conducted in order to confirm the validity of the theoretical results.


Author(s):  
Takashi Ikeda

Nonlinear vibrations of an elastic structure with two partially filled liquid tanks subjected to horizontal harmonic excitation are investigated. The natural frequencies of the structure and sloshing satisfy the tuning condition 1:1:1 when tuned liquid dampers are used. The equations of motion for the structure and the modal equations of motion for the first, second, and third sloshing modes are derived by using Galerkin’s method, taking into account the nonlinearity of the sloshing. Then, van der Pol’s method is employed to determine the frequency response curves. It is found in calculating the frequency response curves that pitchfork bifurcation can occur followed by “localization phenomenon” for a specific excitation frequency range. During this range, sloshing occurs at different amplitudes in the two tanks, even if the dimensions of both tanks are identical. Furthermore, Hopf bifurcation may occur followed by amplitude- and phase-modulated motions including chaotic vibrations. In addition, Lyapunov exponents are calculated to prove the occurrence of both amplitude-modulated motions and chaotic vibrations. Bifurcation sets are also calculated to show the influence of the system parameters on the frequency response. Experiments were conducted to confirm the validity of the theoretical results. It was found that the theoretical results were in good agreement with the experimental data.


Author(s):  
Takashi Ikeda ◽  
Yuji Harata ◽  
Chongyue Shi ◽  
Keisuke Nishimura

Intrinsic localized modes (ILMs) are investigated in an N-pendulum array subjected to vertical harmonic excitation. The pendula behave nonlinearly and are coupled with each other because they are connected by torsional, weak, linear springs. In the theoretical analysis, van der Pol's method is employed to determine the expressions for frequency response curves for the principal parametric resonance, considering the nonlinear restoring moment of the pendula. In the numerical results, frequency response curves for N = 2 and 3 are shown to examine the patterns of ILMs, and demonstrate the influences of the connecting spring constants and the imperfections of the pendula. Bifurcation sets are also calculated to show the excitation frequency range and the conditions for the occurrence of ILMs. Increasing the connecting spring constants results in the appearance of Hopf bifurcations. The numerical simulations reveal the occurrence of ILMs with amplitude modulated motions (AMMs), including chaotic motions. ILMs were observed in experiments, and the experimental data were compared with the theoretical results. The validity of the theoretical analysis was confirmed by the experimental data.


2012 ◽  
Vol 700 ◽  
pp. 304-328 ◽  
Author(s):  
Takashi Ikeda ◽  
Raouf A. Ibrahim ◽  
Yuji Harata ◽  
Tasuku Kuriyama

AbstractNonlinear responses of surface waves in rigid square and nearly square tanks partially filled with liquid subjected to obliquely horizontal, sinusoidal excitation are investigated theoretically and experimentally. Two predominant modes of sloshing are significantly coupled nonlinearly because their natural frequencies are nearly identical resulting in 1:1 internal resonance. Therefore, if only one of these modes is directly excited, the other mode is indirectly excited due to the nonlinear coupling. In the nonlinear theoretical analysis, the modal equations of motion are derived for the two predominant sloshing modes as well as five higher sloshing modes. The linear viscous terms are incorporated in order to consider the damping effect of sloshing. The expressions for the frequency response curves are determined using van der Pol’s method. The influences of the excitation direction and the aspect ratio of the tank cross-section on the frequency response curves are numerically examined. Planar and swirl motions of sloshing, and Hopf bifurcations followed by amplitude modulated motions including chaotic motions, are predicted when the excitation frequency is close to one of the natural frequencies of the two predominant sloshing modes. Lyapunov exponents are calculated and reveal the excitation frequency range over which liquid chaotic motions occur. In addition, bifurcation sets are shown to clarify the influences of the parameters on the change in the structural stability. The theoretically predicted results are in good agreement with the measured data, thus the theoretical analysis was experimentally validated.


Author(s):  
Takashi Ikeda ◽  
Yuji Harata ◽  
Chongyue Shi ◽  
Keisuke Nishimura

Localization phenomena, also referred to as intrinsic localized modes (ILMs), are investigated in an N-pendulum array subjected to vertical harmonic excitation. The pendula behave nonlinearly and are connected with each other by weak linear springs. In the theoretical analysis, van der Pol’s method is employed to determine the expressions for frequency response curves for the principal parametric resonances, considering the nonlinear restoring moment of the pendula. In the numerical results, frequency response curves for N=2 and 3 are shown to examine the patterns of ILMs, and the influences of the connecting spring constants and the imperfections of the pendula. Bifurcation sets are also calculated to show the excitation frequency range and the conditions for the occurrence of ILMs. Increasing the connecting spring constant results in the appearance of Hopf bifurcation. The numerical simulations reveal the occurrence of ILMs with amplitude modulated motions (AMMs) including chaotic motions. ILMs were observed in experiments, and the experimental data were compared with the theoretical results. The validity of the theoretical analysis was confirmed by the experimental data.


Author(s):  
Takashi Ikeda

This paper proposes a new idea to utilize the internal resonance of two different sloshing modes in a nearly square tank when used as a tuned liquid damper (TLD). This idea results in achieving higher efficiency of vibration suppression for flexible structures subjected to horizontal harmonic excitation. Namely, the two sloshing modes (1, 0) and (0, 1) in a nearly square tank are degenerated and hence their natural frequencies are nearly equal with each other. Because the two predominant sloshing modes are nonlinearly coupled, internal resonance is expected to occur. Galerkin’s method is used to determine the modal equations of motion for liquid sloshing. Then, van der Pol’s method is used to determine the expressions of the frequency response curves. Frequency response curves and bifurcation sets are numerically calculated. From these results, the optimal values of the size and instillation angle of the tank can be determined in order to achieve maximum efficiency of vibration suppression in a flexible structure. Experiments confirmed the validity of the theoretical analysis.


2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Takashi Ikeda ◽  
Yuji Harata

Passive control of vibrations in an elastic structure subjected to horizontal, harmonic excitation by utilizing a nearly square liquid tank is investigated. When the natural frequency ratio 1:1:1 is satisfied among the natural frequencies of the structure and the two predominant sloshing modes (1,0) and (0,1), the performance of a nearly square tank as a tuned liquid damper (TLD) is expected to be superior to rectangular TLDs due to internal resonance. In the theoretical analysis, Galerkin's method is used to determine the modal equations of motion for liquid sloshing considering the nonlinearity of sloshing. Then, van der Pol's method is used to obtain the expressions for the frequency response curves for the structure and sloshing modes. Frequency response curves and bifurcation set diagrams are shown to investigate the influences of the aspect ratio of the tank cross section and the tank installation angle on the system response. From the theoretical results, the optimal values of the system parameters can be determined in order to achieve maximum efficiency of vibration suppression for the structure. Hopf bifurcations occur and amplitude modulated motions (AMMs) may appear depending on the values of the system parameters. Experiments were also conducted, and the theoretical results agreed well with the experimental data.


Author(s):  
Takashi Ikeda ◽  
Masaki Takashima ◽  
Yuji Harata

Nonlinear vibrations of an elastic structure coupled with liquid sloshing in a square tank subjected to vertical sinusoidal excitation are investigated. Previous studies examined the vibrations of a structure coupled with only one sloshing mode in a rectangular tank. However, square tanks are expected to work more efficiently as a vibration suppression device (Tuned Liquid Damper, TLD) because two sloshing modes, (1,0) and (0,1) modes, simultaneously appear when the internal resonance ratio 2:1:1 is satisfied. In reality, it is impossible to build a perfectly square tank. Therefore, a nearly square liquid tank is also considered when the tuning condition is slightly deviated. In the theoretical analysis, the fluid in the tank is assumed to be perfect. The modal equations of motion for seven sloshing modes are derived using Galerkin’s method, considering the nonlinear terms. The linear damping terms are then incorporated into the modal equations to consider the damping effect of sloshing. The frequency response curves are determined using van der Pol’s method (based on the harmonic balance method). From these response curves, the influences of the liquid level, the aspect ratio of the tank cross section, and the deviation of the tuning condition are investigated. For a square tank it is found that (1,0) and (0,1) modes are nonlinearly coupled. When the liquid level is high, there are three patterns for sloshing: (I) both (1,0) and (0,1) sloshing modes appear at identical amplitudes; (II) these two modes appear at different amplitudes; and (III) either (1,0) or (0,1) mode appears. Compared with the performance of a rectangular TLD, a square TLD works more efficiently when the liquid level is low. Small deviations of the tuning condition may cause amplitude modulated motion to appear. Bifurcation sets are also calculated to illustrate the influence of the system parameters on the performance of the TLD. Experiments were also conducted in order to confirm the validity of the theoretical results. These results were in good agreement with the experimental data.


2021 ◽  
Author(s):  
Yuji Harata ◽  
Takashi Ikeda

Abstract This study investigates localization phenomena in two identical nonlinear tuned mass dampers (TMDs) installed on an elastic structure, which is subjected to external, harmonic excitation. In the theoretical analysis, the mode shapes of the system are determined, and the modal equations of motion are derived using modal analysis. These equations are demonstrated as forming an autoparametric system in which external excitation directly acts on the first and third vibration modes, whereas the second vibration mode is indirectly excited due to the nonlinear coupling with the other modes. Van der Pol’s method is employed to obtain the frequency response curves for both physical and modal coordinates. The two TMDs vibrate in phase for the first and third modes, but vibrate out of phase for the second mode. Consequently, when all modes appear, the two TMDs may vibrate at different amplitudes, i.e., localization phenomena may occur because the TMD motions are expressed by the summation of motions for all modes. The numerical calculations clarify that the localization phenomena may occur in the two TMDs when all three modes appear simultaneously. Moreover, there are two steady-state solutions of the harmonic oscillations for the second mode with identical amplitudes; however, their phases differ by π. Hence, which TMD vibrates at higher amplitudes depends on which of these two steady-state solutions for the phase.


Author(s):  
Giovanni Ferrari ◽  
Marco Amabili ◽  
Prabakaran Balasubramanian

Large-amplitude (geometrically nonlinear) forced vibrations of completely free sandwich and steel rectangular plates are investigated experimentally. Harmonic excitation is applied by using an electro-dynamic exciter and the plate vibration is measured by using laser Doppler vibrometers. A scanning laser Doppler vibrometer is used for experimental modal analysis since it provides non-contact vibration measurements with very high spatial resolution. The large-amplitude vibration experiments are carried out by using a single point Laser Doppler Vibrometer and a stepped-sine testing procedure. The non-linear frequency response curves are obtained by increasing and decreasing the excitation frequency in very small steps at specific force amplitudes controlled in a closed-loop. The experimental results are compared to numerical simulations obtained by reduced-order models and show very good agreement. The nonlinear damping is experimentally obtained as a function of the vibration amplitude.


Sign in / Sign up

Export Citation Format

Share Document