Sliding Mode Control of Flexible Rotor Using Magneto Rheological Squeeze Film Damper

Author(s):  
Masoud Hemmatian ◽  
Abdolreza Ohadi

This study aims to control the vibration of a flexible rotor system using magneto rheological squeeze film damper (MR-SFD). To evaluate the performance of damper, Bingham plastic model is used for MR fluid and the hydrodynamic equation of MR-SFD is presented. The remarkable point about this equation is the necessity of using numerical methods to solve it. These methods are too costly and impossible especially in the simulation of complex rotors and implementation of model base controllers. To fix this issue, an estimated equation is used in this paper for pressure distribution throughout the damper. By integration of this expression, hydrodynamic forces of MR-SFD are calculated as an algebraic equation. Furthermore, sliding mode controller is chosen as robust control method by considering the structural and parametric uncertainties of the system. Study time and frequency responses of flexible rotor in presence of these controllers show a good performance in reducing vibration of shafts midpoint. The results for the open loop system also indicate that changing the stiffness coefficient of elastic foundation and the temperature of MR fluid (as two uncertainties of system) strongly affects the outputs while using sliding mode controllers well increases the robustness of the system.

2013 ◽  
Vol 135 (5) ◽  
Author(s):  
Masoud Hemmatian ◽  
Abdolreza Ohadi

By using magnetorheological (MR) fluid as the lubricating oil in a traditional squeeze film damper (SFD), one can build a variable-damping SFD, thereby controlling the vibration of a rotor by controlling the magnetic field. This study aims to control the vibration of a flexible rotor system using a magnetorheological squeeze film damper (MR-SFD). In order to evaluate the performance of the damper, the Bingham plastic model is used for the MR fluid and the hydrodynamic equation of MR-SFD is presented. Usually, the numerical methods are necessary for solving this equation. These methods are too costly and time consuming, especially in the simulation of complex rotors and the implementation of model-based controllers. To fix this issue, an innovative estimated equation for pressure distribution in MR-SFD is presented in this paper. By integration of this explicit expression, the hydrodynamic forces of MR-SFD are easily calculated as an algebraic equation. It is shown that the pressure and forces, which are calculated from the introduced expression, are consistent with the corresponding results of the original equations. Furthermore, considering the structural and parametric uncertainties of the system, proportional-integral-furthermore controller (PID) and sliding mode controllers are chosen for reducing the vibration level of the flexible rotor system, which is modeled by the finite element method. The time and frequency responses of a flexible rotor in the presence of these controllers show a good performance in reducing vibration of the shaft's midpoint, although near the rotor's critical speed the results of the sliding mode controller (SMC) are better than the corresponding results of the PID controller. The last part of this article is devoted to an analysis of the system's uncertainties. The results of the open loop system indicate that changes in the stiffness coefficient of the elastic foundation and the temperature of the MR fluid (two uncertainties of the system) strongly affects the outputs while using the controllers well increases the robustness of the system. The obtained results indicate that both the PID and sliding mode controllers have good performance against the uncertainty of the stiffness coefficient, but for changes in the MR fluid's temperature, the SMC presents better outputs compared to the PID controller, especially for high rotational speeds.


2020 ◽  
Vol 70 (2) ◽  
pp. 122-130
Author(s):  
Rahul Kumar Singh ◽  
Mayank Tiwari ◽  
Anpeksh Ambreesh Saksena ◽  
Aman Srivastava

Rotor systems play vital role in many modern day machinery such as turbines, pumps, aeroengines, gyroscopes, to name a few. Due to unavoidable unbalance in the rotor systems, there are lateral and torsional vibrations. Ignoring these effects may cause the system serious damages, which sometimes lead to catastrophic failures. Vibration level in rotor systems is acceptable within a range. Focus in this work is to minimize the vibration level to the acceptable range. One of the ways vibration level can be minimised is by means of providing damping. To accomplish this task in this work a new concept squeeze film damper is made by electro discharge machining which is compact in configuration, is filled with magneto-rheological (MR) fluid and tested out on one support of a Jeffcott rotor. This compact squeeze film damper (SFD) produces damping in a compact volume of the device compared to a conventional SFD. MR fluid is a smart fluid, for which apparent viscosity changes with the application of external magnetic field. This compact damper with MR fluid provides the variable damping force, controlled by an external magnetic field. In this work, proportional controller has been used for providing the control feedback. This MR damper is seen to reduce vibrations in steady state and transient input to the Jeffcott rotor. Parametric study for important design parameters has been done with the help of the simulation model. These controlled dampers can be used for reducing vibrations under different operating conditions and also crossing critical speed.


2011 ◽  
Vol 134 (1) ◽  
Author(s):  
Hamed Ghaednia ◽  
Abdolreza Ohadi

Semiactive vibration reduction devices using magnetorheological fluid (MR fluid) have proven to be effective in different engineering applications. MR squeeze film damper (MR-SFD) is one type of such devices that can be used to reduce unwanted vibration in rotary machinery. The behavior of these devices is a function of electric current, which controls the magnetic field in the lubricant and therefore causes the viscosity of MR fluid to be changed. In spite of all researches have been carried out in behavior analysis of different sorts of MR-SFDs, investigations over thermal growth effects on the efficiency of these actuators, in vibration reduction applications, are rare. In this paper, a Magnetorheological squeeze film damper (MR-SFD) has been modeled using two governing equations. First, considering the Bingham model for MR fluid (MRF), a hydrodynamic model has been presented. Second, a thermal model for the system has been modeled and used to calculate the temperature rise in the squeeze film and different damper’s components. Temperature rise in MR-SFD has been considered in this paper as a novel study. Time and frequency domain analysis using Newmark method has been performed over a finite element model of the system consisting of an unbalanced flexible rotor mounted on a pair of MR-SFDs. Obtained results show that the amplitude of rotor’s vibration is not a simple function of electrical current such that, increase in the current cannot guarantee decrease in the value of amplitude. Two major phenomena have been observed during studies; rigid dampers, and generation of new critical speed. The behavior of the rotor is deeply affected by these phenomena. The steady state response of rotor versus rotation velocity is presented for different values of electrical current, which show the effects of temperature and current on the steady state response of rotor. Generally, temperature rise results in inefficiency of MR-SFDs to suppress the vibration of the rotor, especially for rotational velocities near critical speed. Due to temperature rise, appearance of the second critical speed occurs at higher values of electrical current. In addition, it delays the “rigid damper” phenomenon causing rotor response to decrease.


Author(s):  
C-C Siew ◽  
M Hill ◽  
R Holmes ◽  
M Brennan

This paper presents two efficient methods to calculate the unbalance vibration response of a flexible rotor provided with a squeeze-film damper (SFD) with retainer springs. Both methods are iterative and combine the harmonic balance and receptance approaches. The first method, called the modified iteration method (MIM), is suitable for predicting the three-dimensional mode shapes of a concentric SFD-rotor system. The second method, called the modified harmonic balance method (MHBM), is developed to calculate the non-linear vibration response of a flexible shaft provided with either a concentric or eccentric SFD. The system is also investigated experimentally under different conditions. The predictions computed by these methods are compared with experimental measurements and reasonably good agreement is obtained.


2018 ◽  
Vol 141 (2) ◽  
Author(s):  
David Bou Saba ◽  
Paolo Massioni ◽  
Eric Bideaux ◽  
Xavier Brun

Pneumatic artificial muscles (PAMs) are an interesting type of actuators as they provide high power-to-weight and power-to-volume ratio. However, their efficient use requires very accurate control methods taking into account their complex and nonlinear dynamics. This paper considers a two degrees-of-freedom platform whose attitude is determined by three pneumatic muscles controlled by servovalves. An overactuation is present as three muscles are controlled for only two degrees-of-freedom. The contribution of this work is twofold. First, whereas most of the literature approaches the control of systems of similar nature with sliding mode control, we show that the platform can be controlled with the flatness-based approach. This method is a nonlinear open-loop controller. In addition, this approach is model-based, and it can be applied thanks to the accurate models of the muscles, the platform and the servovalves, experimentally developed. In addition to the flatness-based controller, which is mainly a feedforward control, a proportional-integral (PI) controller is added in order to overcome the modeling errors and to improve the control robustness. Second, we solve the overactuation of the platform by an adequate choice for the range of the efforts applied by the muscles. In this paper, we recall the basics of this control technique and then show how it is applied to the proposed experimental platform. At the end of the paper, the proposed approach is compared to the most commonly used control method, and its effectiveness is shown by means of experimental results.


Author(s):  
Riaan F. Meeser ◽  
P. Schalk Els ◽  
Sudhir Kaul

This paper presents the design of a magneto-rheological (MR) damper for an off-road vehicle where large suspension travel and high flow rates, as compared to typical passenger car suspensions, are required. The MR damper is expected to enhance the capability of the suspension system by allowing variable damping due to inherent properties of the MR fluid. MR fluids exhibit a reversible behavior that can be controlled with the intensity of a magnetic field, allowing a change in the effective viscosity and thereby in the damping characteristics of the fluid. A mathematical model of the proposed damper has been developed using the Bingham plastic model so as to determine the necessary geometry for the damper designed in this study, using the fluid flow rate and current to the electromagnet as the input variables. The model is used to compute the damping force, and the analytical results show that the designed MR damper provides the required range of damping force for the specific vehicle setup that is being used for this study. A valve-mode MR fluid channel has been designed such that the required minimum damping is reached in the off-state, and the desired maximum damping is reached in the on-state. For manufacturing and size considerations, the final design incorporates a triple pass layout with the MR fluid flowing through the three passages that are arranged in an S-shape so as to minimize the cross section of the electromagnet core.


2006 ◽  
Vol 15 (1) ◽  
pp. 164-170 ◽  
Author(s):  
C Carmignani ◽  
P Forte ◽  
E Rustighi

1999 ◽  
Vol 122 (1) ◽  
pp. 7-11 ◽  
Author(s):  
Yao Guozhi ◽  
Yap Fook Fah ◽  
Chen Guang ◽  
Meng Guang ◽  
Fang Tong ◽  
...  

In this paper, a new electro-rheological multi-layer squeeze film damper (ERMSFD in short) is designed first and the constitutional Reynolds equation is established. Then the behavior of the rotor system is analyzed, the vibration around the first critical speed is suppressed and an on/off control is proposed to control the large amplitude around the first critical speed. A control method is used to suppress the sudden unbalance response. Finally, experiments are carried out to investigate the behavior of the rotor system to prove the effectiveness of the ER damper to suppress the vibration around the critical speed and the sudden unbalance response. [S0739-3717(00)00301-9]


Sign in / Sign up

Export Citation Format

Share Document